博碩士論文 105322032 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.145.66.14
姓名 邱威智(Wei-Chih Chiu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 逆斷層錯動下土層應力場受淺基礎載重及位置之影響
相關論文
★ 探討逆向坡受重力變形 及降雨影響之破壞型態★ 以離心模型試驗及個別元素法評估正斷層和逆斷層錯動地表及地下變形
★ 極端降雨下堤防破壞機制探討 -以舊寮堤防為例★ 土壤工程性質水平方向空間變異性探討-以標準貫入試驗N值為例
★ 使用離散元素法進行乾砂直剪試驗模擬★ 以微觀角度探討顆粒狀材料在直剪試驗下之力學行為
★ 以地理統計方法進行大範圍基地地盤改良評估★ 以離散元素法進行具鍵結顆粒材料之直剪試驗模擬
★ 地工織物加勁土壤之承載力影響因子探討 -以中大紅土為例★ 以離散元素法探討加勁砂土層在淺基礎受載重下之力學
★ 卵礫石層直接剪力試驗與垂直平鈑載重試驗之離散元素法數值模擬★ 不同粗糙度係數下岩石節理面剖面之空間變異性探討
★ 以分離元素法與離心模型模擬在不同尺度下順向坡滑動行為★ 極端降雨下堤防邊坡穩定可靠度探討-以荖濃溪沿岸堤防為例
★ The micromechanical behavior of granular samples in direct shear tests using 3D DEM★ 以分離元素法與離心模型試驗探討順向坡滑動行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位處於歐亞大陸板塊與菲律賓海板塊之交界,所以在進行工
程設計,經常要考慮地震的作用,特別是位於活動斷層附近的區域,
必須更加留意斷層錯動造成的破壞,近年來,如台灣集集大地震、土
耳其Izmit 地震、中國汶川大地震、日本福島大地震等活動斷層造成
的災害,均使生命財產遭受到嚴重的損害。通常在較大地震過後的現
場可以發現,結構的傾倒或是變形,主要受到斷層錯動造成地表變形
的影響。藉由觀察斷層錯動和基礎位移或變形下的互制關係,可以發
現斷層破裂路徑似乎會轉向,進而避免結構的破壞。因此近幾年來有
許多研究考慮使用有限元素法(Finite Element Method, FEM)與離散元
素法(Discrete Element Method, DEM)等數值方法進行模擬,然而斷層
錯動往往達到數公尺,當斷層變形過大時,有限元素法網格會造成較
大的變形,所以在本研究中為了得到較精確的結果,考慮使用離散元
素法進行逆斷層模擬。
研究中,參考張有毅(2013)砂箱試驗之離心模型試驗,使用
PFC2D(Particle Flow Code in Two Dimension)在80g 下進行淺基礎與
斷層的互制關係模擬,其斷層最大垂直位移(h)為5cm。模擬中所採
用的變因包括:(1)基礎的載重大小和(2)基礎相對自由場的出露距離大
II
小,然後利用這些變因來探討淺基礎與斷層互制關係的原因。首先
藉由顆粒的旋轉角來判斷基礎在逆斷層錯動下剪裂帶的發展狀況,
然後探討基礎相對自由場的出露距離大小與基礎的載重大小兩種變
因,這兩種變因比較基礎在逆斷層錯動下剪裂帶的發展長度對基礎
影響大小;近一步得知應力在模型中不同位置的變化,按照深度分
成淺、中、深三層,再依照位置分成上盤、過渡區、下盤三個區
域,依此原則設置觀測圓讀取數據,再將最後模擬結果藉由應力路
徑,探討基礎相對自由場的出露距離大小與基礎的載重大小兩種變
因,這兩種變因比較基礎在逆斷層錯動下土層應力場發生破壞的狀
況,藉由應力路徑的分析了解基礎在逆斷層錯動下土層發生破壞的
過程;由剪裂帶的發展狀況及應力場的變化可以比較出兩個變因的
影響大小。
摘要(英) Taiwan is located between Eurasian plate and Philippine sea plate, so
the effect of earthquake must be considered in the engineering design. The
area close to the active fault must be paid more attention to the damage
from the fault rupture. In recent years, events such as the Chi-Chi
earthquake, Izmit earthquake, Wenchuan earthquake and Fukushima
earthquake caused serious damages to the structures and lives. After the
earthquake, the propagation of reverse faults through soil layers to the
ground surface has been observed to cause damages to infrastructure.
Furthermore, the interaction between a fault propagating through a sand
layer and a shallow foundation can be beneficial for heavily loaded
foundations because this loading condition can deviate fault away from the
foundation.
In this research, we have used the models in Chang (2013) as base
models, in which centrifuge modelling of fault–foundation interaction was
simulated. The tests revealed interaction between fault and foundation and
found that the foundation and soil response depend on the foundation
loading, position, and breadth.
To observe the variation of stress states in different location within the
soil layers with different parameters, the model is separated into shallow
layer, medium layer and deep layer in the vertical direction, and divided
into three zones depending on the horizontal location (hanging wall zone,
triangular shear zone and footwall zone). Measurement circles are placed
in the model to measure the stresses according to the above zoning and the
results are shown by stress paths. The results show that compression
between footing wall and hanging wall affects the development of
horizontal stress obviously, it increases the values of horizontal stress.
Finally, the effect of foundation location and loadings are discussed by the
development of shear zones and stress paths.
關鍵字(中) ★ 逆斷層 關鍵字(英)
論文目次 摘要 .................................................................................................................... I
Abstract ................................................................................................................. III
目錄 ................................................................................................................. IV
圖目錄 ................................................................................................................. VI
表目錄 .............................................................................................................. XIII
第一章 緒論............................................................................................................ 1
1.1 研究動機.................................................................................................... 1
1.2 研究目的.................................................................................................... 2
第二章 文獻回顧.................................................................................................... 3
2.1 離散元素簡介............................................................................................ 3
2.1.1 離散元素原理.................................................................................... 3
2.1.2 PFC2D 模擬概述與限制 .................................................................... 5
2.1.3 二維模擬與三維模擬的差異............................................................ 6
2.2 顆粒材料在直剪模型中之微觀力學行為................................................ 8
2.2.1 試驗介紹............................................................................................ 8
2.2.2 試驗結果.......................................................................................... 10
2.3 逆斷層介紹.............................................................................................. 12
2.4 逆斷層與基礎的互制關係...................................................................... 13
2.4.1 基礎位置.......................................................................................... 14
2.4.2 基礎寬度.......................................................................................... 17
2.4.3 基礎載重.......................................................................................... 18
2.5 數值模型.................................................................................................. 21
2.5.1 自由場狀態...................................................................................... 21
2.5.2 基礎與正斷層互制.......................................................................... 23
第三章 研究方法.................................................................................................. 25
3.1 觀測圓...................................................................................................... 25
3.1.1 觀測圓原理...................................................................................... 25
3.1.2 孔隙率計算...................................................................................... 26
3.1.3 應力計算.......................................................................................... 27
3.2 模型驗證及檢核...................................................................................... 31
3.2.1 參數決定與校正.............................................................................. 31
3.2.2 模型建置.......................................................................................... 33
3.2.3 模型分層與切割.............................................................................. 34
3.2.4 淺基礎模型的設置.......................................................................... 34
3.2.5 觀測圓設置...................................................................................... 36
3.2.6 垂直應力增量的檢核...................................................................... 38
3.2.7 斷層滑動.......................................................................................... 40
3.3 應力狀態分析.......................................................................................... 41
3.3.1 簍空觀測圓應力的修正.................................................................. 41
3.3.2 應力路徑.......................................................................................... 42
3.4 剪裂帶的判斷.......................................................................................... 45
第四章 模型驗證.................................................................................................. 49
4.1 垂直應力驗證.......................................................................................... 49
4.1.1 基礎位於斷層上盤垂直應力的驗證.............................................. 51
4.1.2 基礎跨過剪裂帶垂直應力的驗證.................................................. 55
4.1.3 基礎載重為108.8kPa 垂直應力的驗證......................................... 59
4.2 水平應力比較.......................................................................................... 63
4.2.1 基礎位置的比較(s/B=0 以及s/B=0.69) ......................................... 64
4.2.2 基礎載重大小的比較(q=54.4kPa 以及q=108.8kPa) .................... 66
4.2.3 靜止土壓力係數.............................................................................. 69
4.3 基礎旋轉角.............................................................................................. 71
4.3.1 基礎坐落在不同位置的比較.......................................................... 73
4.3.2 基礎在不同載重的比較.................................................................. 78
第五章 剪裂帶發展與應力路徑分析 ................................................................. 83
5.1 應力路徑方向(s/B=0 & q=54.4kPa) ....................................................... 84
5.1.1 淺層應力發展(s/B=0 & q=54.4kPa) ............................................... 84
5.1.2 中層應力發展(s/B=0 & q=54.4kPa) ............................................... 87
5.1.3 深層應力發展(s/B=0 & q=54.4kPa) ............................................... 89
5.2 剪裂帶發展的狀況.................................................................................. 91
5.2.1 剪裂帶之基礎位置不同的比較(s/B=0 & s/B=0.69) ...................... 91
5.2.2 剪裂帶之基礎載重不同的比較(q=54.4kPa & q=108.8kPa) ......... 95
5.3 應力路徑分析.......................................................................................... 99
5.3.1 應力路徑之基礎位置不同的比較(s/B=0 & s/B=0.69) .................. 99
5.3.2 應力路徑之基礎載重不同的比較(q=54.4kPa & q=108.8kPa) ... 102
第六章 結論與建議 ........................................................................................... 104
6.1 結論........................................................................................................ 104
6.2 建議與未來展望.................................................................................... 106
參考文獻 ................................................................................................................ 107
附錄1 Q&A .............................................................................................................. 109
附錄2 基礎位於斷層上盤應力路徑 ...................................................................... 112
附錄3 基礎跨過剪裂帶應力路徑 .......................................................................... 122
附錄4 基礎跨過剪裂帶載重為108.8kPa 應力路徑 ............................................. 132
參考文獻 1. 潘國樑,工程地質學導論,科技圖書,臺北市,第173-151 頁
(2007)。
2. 宋丘言,「使用離散元素法進行乾砂直剪試驗模擬」,碩士論文,
國立中央大學土木工程所,桃園(2012)。
3. 廖泓韻,以微觀角度探討顆粒狀材料在直剪試驗下之力學行為,
碩士論文,國立中央大學土木工程所,桃園(2013)。
4. 張有毅,「以離心模型試驗及個別元素法評估正斷層和逆斷層錯
動地表及地下變形」,博士論文,國立中央大學土木工程所,桃
園(2013)。
5. 曾議德,「逆斷層錯動下土層應力場及微觀組構變化初探」,碩士
論文,國立中央大學土木工程所,桃園(2016)。
6. Anastasopoulos, I., G. Gazetas, M.ASCE, M. Bransby, M. Davies and
A. El Nahas., “Normal Fault Rupture Interaction with Strip
Foundations,” Journal of Geotechnical and Geoenvironmental
Engineering, Vol. 135, No. 3, pp.359-370(2009)
7. Anastasopoulos, I., G. Gazetas, M. Bransby, M. Davies and A. El
Nahas., “Fault Rupture Propagation through Sand: Finite-Element
Analysis and Validation through Centrifuge Experiments,” Journal of
Geotechnical and Geoenvironmental Engineering, Vol. 133, No. 8,
pp.943-958 (2007).
8. Bransby, M.F., Davies, M.C.R., El Nahas, A., Nagaoka, S.,
“Centrifuge modelling of reverse fault–foundation interaction,” Bull
Earthquake Eng, Vol. 6, pp. 607-628 (2008).
9. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung,
W.Y., Lin, Y. H. ”Use of centrifuge experiments and discrete elementanalysis to model the reverse fault slip,” International Journal of Civil
Engineering, Vol. 11, No. 2, pp. 91-95 (2013).
10. Cundall, P. A., “A Computer Model for Simulating Progressive Large
Scale Movements in Blocky Rock Systems,” Proceedings of the
Symposium of the International Society of Rock Mechanics, Vol. 1,
No. II-8, pp. 129-136 (1971).
11. Cundall, P. A., and Strack, O. D. L., “A Discrete Numerical Model for
Granular Assemblies,” Geotechnique, Vol. 29, No. 1, pp. 47-65(1979).
12. Chang, Y.Y., Lee, C.J., Huang, W.C., Huang, W.J., Lin, M.L., Hung,
W.Y., Lin, Y. H. ”Evolution of the surface deformation profile and
subsurface distortion zone during reverse faulting through overburden
sand,” Engineering Geology, Vol. 184, pp.52-70 (2015).
13. Das, B.M., Sobhan, K., Principle of Geotechnical Engineering,
Cengage Learning, pp. 318-323 (2010).
14. Deresiewicz, H., “Mechanics of Granular Matter,” Advances in
Applied Mechanics, Vol. 5, 233-306(1958).
15. Hibbeler, R.C., Mechanics of Materials, Pearson, pp. 510-511 (2010).
16. Huang, W.C., Sung, C.Y., Liao, H.Y., Chu, S.S., “Micromechanical
behavior of granular materials in direct shear modeling,” Journal of
the Chinese Institute of Engineers, Vol. 38, No.4, pp. 469-480 (2015).
17. Itasca Consulting Group Inc. PFC2D (Particle Flow Code in 2
Dimensions). Version 4.0 Minneapolis, MN: ICG(2008).
18. Lambe, T.W., “Stress Path Method”, Journal of the Soil Mechanics
and Foundations Division, ASCE, Vol. 93, No. 6, pp. 309-301(1967).
19. Yimsiri, S., Soga, K., “Micromechanics-basedstress–strain behavior of
soils at small strains,” Géotechnique, Vol. 50, No. 5, pp. 559-571
(2000).
指導教授 黃文昭(Wen-Chao Huang) 審核日期 2019-1-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明