博碩士論文 952201009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.135.247.17
姓名 吳思潔(Szu-Chieh Wu)  查詢紙本館藏   畢業系所 數學系
論文名稱 缺陷指數為1的矩陣之研究
(A Study on Matrices of Defect Index One)
相關論文
★ 橢圓形數值域之四階方陣★ 數值域邊界上之線段
★ 正規壓縮算子與正規延拓算子★ 加權排列矩陣及加權位移矩陣之數值域
★ 可分解友矩陣之數值域★ 可分解友矩陣之研究
★ 關於巴氏空間上連續函數的近乎收斂性★ 三角不等式與Jensen不等式之精化
★ A-Statistical Convergence of Korovkin Type Approximation★ I-Convergence of Korovkin Type Approximation Theorems for Unbounded Functions
★ 四階方陣的高秩數值域★ 位移算子其有限維壓縮算子的反矩陣
★ 2×2方塊矩陣的數值域★ 加權位移矩陣的探討與廣義三角不等式的優化
★ 喬登方塊和矩陣的張量積之數值域半徑★ 3×3矩陣乘積之數值域及數值域半徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) ㄧ個n階矩陣A其缺陷指數為$rank(I_n-A^ast A)$。本論文探討關於「缺陷指數為1的矩陣」其性質之刻劃。令$mathcal{S}_n ≡ {A in M_n: rank(I_n-A^ast A)=1 and |lambda|<1 for all lambda in sigma(A)}$和 $mathcal{S}_n^{-1} ≡ {A in M_n: rank(I_n-A^ast A)=1 and |lambda|>1 for all lambda in sigma(A)}$。首先我們發現這兩類矩陣皆為具有缺陷指數為1之基本矩陣,進一步而言,我們證明一矩陣其缺陷指數為1之充分必要條件為它可分解成一個么正矩陣和一個$mathcal{S}_n$ 矩陣的直和或是一個么正矩陣和一個$mathcal{S}_n^{-1}$矩陣的直和。此外,我們也針對$mathcal{S}_n^{-1}$矩陣給一個完整的刻劃以及它們的極分解。亦證明每一個$mathcal{S}_n^{-1}$ 矩陣均具有循環、不可分解、且其數值域之邊界為一代數曲線。並給出$mathcal{S}_n^{-1}$ 矩陣的範數其由特徵值所表示。
摘要(英) Given an $n$-by-$n$ matrix $A$, the dimension of $ran(I_n-A^ast A)$ is called the defect index of $A$. In this thesis, we make a detailed study of matrices $A$ with the property $rank(I_n-A^ast A)=1$. Let $mathcal{S}_n equiv {A in M_n: rank(I_n-A^ast A)=1: and |lambda|<1 for all lambda in sigma(A)}$ and $mathcal{S}_n^{-1} equiv {A in M_n: rank(I_n-A^ast A)=1 and |lambda|>1 for all lambda in sigma(A)}$. Firstly, we give a complete characterization for matrices of defect index one, namely, $rank(I_n-A^ast A)=1$ if and only if $A$ is unitarily equivalent to either $U oplus B$ or $U oplus C$, where $U$ is a $k times k$ unitary matrix, $0 leq k< n$, $B in mathcal{S}_{n-k}^{-1}$ and $C in mathcal{S}_{n-k}$. Moreover, we also give a complete characterization of $mathcal{S}_n^{-1}$-matrices. We find the polar decompositions of $mathcal{S}_n^{-1}$-matrices. Next, we prove that every $mathcal{S}_n^{-1}$-matrix is irreducible, cyclic, and the boundary of its numerical range is an algebraic curve. Finally, we give the
norm of $mathcal{S}_n^{-1}$-matrices in terms of its eigenvalues.
關鍵字(中) ★ 數值域
★ 缺陷指數
★ 極分解
關鍵字(英) ★ polar decomposition
★ numerical range
★ defect index
論文目次 1. Introduction ..........................................1
2. Preliminaries .........................................2
2.1 Basic Properties of Numerical Range...................2
2.2 Matrices of Defect Index One..........................3
2.3 Matrices of Classes $S_n$ and $S_n^{-1}$..............3
2.4 Polar Decompositions of $S_n$-Matrices ...............4
3. Main Results...........................................5
3.1 Classifications of Matrices of Defect Index One.......5
3.2 Polar Decompositions of $S_n^{-1}$-Matrices...........8
3.3 Matrix Representations for Operators in $S_n^{-1}$...12
3.4 Numerical Ranges of $S_n^{-1}-Matrices...............17
3.5 Norm of $S_n^{-1}$ -Matrices.........................29
• References ............................................31
參考文獻 [1] R.A. Horn and C.R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.
[2] R.A. Horn and C.R. Johnson, Topics in Matrix Analysis, Cambridge University Press, 1991.
[3] D.S.Keeler, L. Rodman and I.M. Spitkovsky, The Numerical Range of 3×3 Matrices, Linear Algebra and its Appl., 252 (1997), 115–139.
[4] H.-L. Gau and P. Y. Wu, Numerical Range of S(ψ), Linear and Multilinear Algebra, 45 (1998), 49–73.
[5] H.-L. Gau and P. Y. Wu, Lucas’ Theorem Refined, Linear and Multilinear Algebra, 45 (1999), 359–373.
[6] H.-L. Gau and P. Y. Wu, Companion Matrices: Reducibility, Numerical Ranges and Similarity to Contractions, Linear Algebra and its Appl., 383 (2004),127–142.
[7] H.-L. Gau and P. Y. Wu, Numerical Range of a Normal Compression, Linear and Multilinear Algebra, 52 (2004), 195–201.
[8] P. Y. Wu, Polar Decompositions of C0(N) contractions, Integral Equations Operator Theory, 56 (2006), 559–569.
[9] M.-S. Sun, A Study on Reducible Companion Matrices, Master Thesis, June 2006, National Central University, Taiwan.
指導教授 高華隆(Hwa-Long Gau) 審核日期 2008-6-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明