參考文獻 |
[1] S. Jiang, Y. Chen, G. Duan, C. Mei, A. Greiner, and S. Agarwal, "Electrospun nanofiber reinforced composites: a review," Polymer Chemistry, vol. 9, pp. 2685-2720, 2018.
[2] Z. Li and C. Wang, "Effects of Working Parameters on Electrospinning," One-Dimensional nanostructures: Electrospinning Technique and Unique Nanofibers, Springer, pp. 15-28, 2013.
[3] S. L. Shenoy, W. D. Bates, H. L. Frisch, and G. E. Wnek, "Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer–polymer interaction limit," Polymer, vol. 46, pp. 3372-3384, 2005.
[4] C. J. Angammana and S. H. Jayaram, "Analysis of the Effects of Solution Conductivity on Electrospinning Process and Fiber Morphology," IEEE Transactions on Industry Applications, vol. 47, pp. 1109-1117, 2011.
[5] S. Chuangchote, T. Sagawa, and S. Yoshikawa, "Electrospinning of Poly(vinyl pyrrolidone): Effects of Solvents on Electrospinnability for the Fabrication of Poly(p-phenylene vinylene) and TiO2 Nanofibers," Journal of applied polymer science, vol. 114, pp. 2777-2791, 2009.
[6] Q. Yang, Z. Li, Y. Hong, Y. Zhao, S. Qiu, C. Wang, et al., "Influence of solvents on the formation of ultrathin uniform poly(vinyl pyrrolidone) nanofibers with electrospinning," Journal of Polymer Science Part B: Polymer Physics, vol. 42, pp. 3721-3726, 2004.
[7] X. Yuan, Y. Zhang, C. Dong, and J. Sheng, "Morphology of ultrafine polysulfone fibers prepared by electrospinning," Polymer International, vol. 53, pp. 1704-1710, 2004.
[8] H. R. Darrell and C. Iksoo, "Nanometre diameter fibres of polymer, produced by electrospinning," Nanotechnology, vol. 7, p. 216, 1996.
[9] S. H. Tan, R. Inai, M. Kotaki, and S. Ramakrishna, "Systematic parameter study for ultra-fine fiber fabrication via electrospinning process," Polymer, vol. 46, pp. 6128-6134, 2005.
[10] L. Sharifi, F. Assa, H. Ajamein, and S. H. Mirhosseini, "Effect of Voltage and Distance on Synthesis of Boehmite Nanofibers with PVP by the Electrospinning Method," vol. 98, 2017.
[11] S. Farhang Dehghan, F. Golbabaei, B. Maddah, M. Latifi, H. Pezeshk, M. Hasanzadeh, et al., "Optimization of Electrospinning Parameters for PAN-MgO Nanofibers Applied in Air Filtration," Journal of the Air & Waste Management Association, vol. 66, pp. 912-921.2016.
[12] S. Zargham, S. Bazgir, A. Tavakoli, A. Saied Rashidi, and R. Damerchely, "The Effect of Flow Rate on Morphology and Deposition Area of Electrospun Nylon 6 Nanofiber," Journal of Engineered Fabrics & Fibers, vol. 7, 2012.
[13] J. T. McCann, M. Marquez, and Y. Xia, "Highly Porous Fibers by Electrospinning into a Cryogenic Liquid," Journal of the American Chemical Society, vol. 128, pp. 1436-1437, 2006.
[14] P. Kiselev and J. Rosell-Llompart, "Highly aligned electrospun nanofibers by elimination of the whipping motion," Journal of Applied Polymer Science, vol. 125, pp. 2433-2441, 2012.
[15] S. Koombhongse, W. Liu, and D. H. Reneker, "Flat polymer ribbons and other shapes by electrospinning," Journal of Polymer Science Part B: Polymer Physics, vol. 39, pp. 2598-2606, 2001.
[16] J. T. McCann, D. Li, and Y. Xia, "Electrospinning of nanofibers with core-sheath, hollow, or porous structures," Journal of Materials Chemistry, vol. 15, pp. 735-738, 2005.
[17] F.-L. Zhou, R. Gong, and I. Porat, "Mass production of nanofibre assemblies: By electrostatic spinning," Polymer International, vol. 58, pp. 331-342, 2009.
[18] S. Xie and Y. Zeng, "Effects of Electric Field on Multineedle Electrospinning: Experiment and Simulation Study," Industrial & Engineering Chemistry Research, vol. 51, pp. 5336-5345, 2012.
[19] H. Niu and T. Lin, "Fiber Generators in Needleless Electrospinning," Journal of Nanomaterials, vol. 2012, p. 13, 2012.
[20] F. Yalcinkaya, "Preparation of various nanofiber layers using wire electrospinning system," Arabian Journal of Chemistry, 2016.
[21] D. Li and Y. Xia, "Fabrication of Titania Nanofibers by Electrospinning," Nano Letters, vol. 3, pp. 555-560, 2003.
[22] W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, et al., "Processing and Structure Relationships in Electrospinning of Ceramic Fiber Systems," Journal of the American Ceramic Society, vol. 89, pp. 395-407, 2006.
[23] Z. Chen, Z. Zhang, C.-C. Tsai, K. Kornev, I. Luzinov, M. Fang, et al., "Electrospun mullite fibers from the sol–gel precursor," Journal of Sol-Gel Science and Technology, vol. 74, pp. 208-219, 2015.
[24] Y. Zhang, J. Li, Q. Li, L. Zhu, X. Liu, X. Zhong, et al., "Preparation of In2O3 ceramic nanofibers by electrospinning and their optical properties," Scripta materialia, vol. 56, pp. 409-412, 2007.
[25] C. Shao, H. Guan, Y. Liu, J. Gong, N. Yu, and X. Yang, "A novel method for making ZrO2 nanofibres via an electrospinning technique," Journal of Crystal Growth, vol. 267, pp. 380-384, 2004.
[26] C. Wessel, R. Ostermann, R. Dersch, and B. M. Smarsly, "Formation of inorganic nanofibers from preformed TiO2 nanoparticles via electrospinning," The Journal of Physical Chemistry C, vol. 115, pp. 362-372, 2010.
[27] H. Zhang and M. Edirisinghe, "Electrospinning zirconia fiber from a suspension," Journal of the American Ceramic Society, vol. 89, pp. 1870-1875, 2006.
[28] M. Möller, N. Tarabanko, C. Wessel, R. Ellinghaus, H. Over, and B. M. Smarsly, "Electrospinning of CeO2 nanoparticle dispersions into mesoporous fibers: on the interplay of stability and activity in the HCl oxidation reaction," RSC Advances, vol. 8, pp. 132-144, 2018.
[29] D. B. Leiser, M. Smith, and H. E. Goldstein, "Developments in fibrous refractory composite insulation," 1981.
[30] Y. Chen, X. Mao, H. Shan, J. Yang, H. Wang, S. Chen, et al., "Free-standing zirconia nanofibrous membranes with robust flexibility for corrosive liquid filtration," RSC Advances, vol. 4, pp. 2756-2763, 2014.
[31] X. Mao, Y. Bai, J. Yu, and B. Ding, "Flexible and highly temperature resistant polynanocrystalline zirconia nanofibrous membranes designed for air filtration," Journal of the American Ceramic Society, vol. 99, pp. 2760-2768, 2016.
[32] M. Guo, B. Ding, X. Li, X. Wang, J. Yu, and M. Wang, "Amphiphobic nanofibrous silica mats with flexible and high-heat-resistant properties," The Journal of Physical Chemistry C, vol. 114, pp. 916-921, 2009.
[33] Y. Wang, W. Li, Y. Xia, X. Jiao, and D. Chen, "Electrospun flexible self-standing γ-alumina fibrous membranes and their potential as high-efficiency fine particulate filtration media," Journal of Materials Chemistry A, vol. 2, pp. 15124-15131, 2014.
[34] S.-J. Park, G. G. Chase, K.-U. Jeong, and H. Y. Kim, "Mechanical properties of titania nanofiber mats fabricated by electrospinning of sol–gel precursor," Journal of sol-gel science and technology, vol. 54, pp. 188-194, 2010.
[35] Y. Si, C. Yan, F. Hong, J. Yu, and B. Ding, "A general strategy for fabricating flexible magnetic silica nanofibrous membranes with multifunctionality," Chemical Communications, vol. 51, pp. 12521-12524, 2015.
[36] A. Biswas, H. Park, and W. M. Sigmund, "Flexible ceramic nanofibermat electrospun from TiO2–SiO2 aqueous sol," Ceramics International, vol. 38, pp. 883-886, 2012.
[37] M. Z. B. Mukhlish, Y. Horie, K. Higashi, A. Ichigi, S. Guo, and T. Nomiyama, "Self-standing conductive ITO-silica nanofiber mats for use in flexible electronics and their application in dye-sensitized solar cells," Ceramics International, vol. 43, pp. 8146-8152, 2017.
[38] H.-y. Wei, H. Li, Y. Cui, R.-l. Sang, H.-y. Wang, P. Wang, et al., "Synthesis of flexible mullite nanofibres by electrospinning based on nonhydrolytic sol–gel method," Journal of Sol-Gel Science and Technology, vol. 82, pp. 718-727, 2017.
[39] X. Mao, H. Shan, J. Song, Y. Bai, J. Yu, and B. Ding, "Brittle-flexible-brittle transition in nanocrystalline zirconia nanofibrous membranes," CrystEngComm, vol. 18, pp. 1139-1146, 2016.
[40] X. Mao, Y. Bai, J. Yu, and B. Ding, "Insights into the flexibility of ZrMxOy (M= Na, Mg, Al) nanofibrous membranes as promising infrared stealth materials," Dalton Transactions, vol. 45, pp. 6660-6666, 2016.
[41] W. Han, B. Ding, M. Park, F. Cui, S.-H. Chae, and H.-Y. Kim, "Insight into the precursor nanofibers on the flexibility of La2O3-ZrO2 nanofibrous membranes," e-Polymers, vol. 17, pp. 243-248, 2017.
[42] G. Cadafalch Gazquez, H. Chen, S. A. Veldhuis, A. Solmaz, C. Mota, B. A. Boukamp, et al., "Flexible yttrium-stabilized zirconia nanofibers offer bioactive cues for osteogenic differentiation of human mesenchymal stromal cells," ACS nano, vol. 10, pp. 5789-5799, 2016.
[43] K. Castkova, K. Maca, J. Sekaninova, J. Nemcovsky, and J. Cihlar, "Electrospinning and thermal treatment of yttria doped zirconia fibres," Ceramics International, vol. 43, pp. 7581-7587, 2017.
[44] M. M. Munir, A. B. Suryamas, F. Iskandar, and K. Okuyama, "Scaling law on particle-to-fiber formation during electrospinning," Polymer, vol. 50, pp. 4935-4943, 2009.
[45] M. Li, Z. Feng, P. Ying, Q. Xin, and C. Li, "Phase transformation in the surface region of zirconia and doped zirconia detected by UV Raman spectroscopy," Physical Chemistry Chemical Physics, vol. 5, pp. 5326-5332, 2003.
[46] F. Ribot, P. Toledano, and C. Sanchez, "X-ray and spectroscopic investigations of the structure of yttrium acetate tetrahydrate," Inorganica chimica acta, vol. 185, pp. 239-245, 1991.
[47] M. Manna, D. Grandstaff, G. Ulmer, and E. Vicenzi, "The chemical durability of yttria-stabilited ZrO2 pH and O2 geothermal sensors," Proceedings of the Tenth International Symposium on Water–Rock Interaction. Balkema, Rotterdam, The Netherlands, pp. 295-299, 2001.
[48] M. Della Negra, C. Knöfel, K. T. S. Thydén, and M. Wandel, "Study of the behaviour of YSZ dispersions in water," 12th Conference of the European Ceramic Society, 2011.
[49] 李政憲,「應用於高溫氣體過濾之氧化鋯奈米纖維濾網」,碩士論文,國立中央大學化學工程與材料工程學系,2016。 |