博碩士論文 105223002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:18.118.31.72
姓名 許育慎(Yu-Shen Hsu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用水相原位創新法合成酵素有機金屬骨架複合材料及酵素失活機制之探討
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗室於2015年以原位創新合成(de novo approach)的方式將過氧化氫酶(Catalase)包入咪唑骨架材料-90 (ZIF-90)之中。此方法所合成的酵素有機金屬骨架複合材料可藉由ZIF-90的孔洞性質保護酵素不被大分子蛋白質水解酶攻擊的同時,仍能維持酵素活性運作。而本研究則更近一步的利用此材料來探討酵素在蛋白質變性因子-尿素中的表現。
  本研究假設在原位創新法合成中ZIF-90在包覆酵素時,會限制住了酵素周圍的空間,使酵素難以進行構形的變化。為證明酵素在ZIF-90中難以變換構形,本研究將酵素有機金屬骨架複合材料置入變性試劑(Denaturant reagent):尿素之中進行一系探討。預測由於空間限制的作用,即使在尿素環境中,酵素仍保有活性。本研究亦利用中孔矽材(MCF、SBA-15)作為對照組,探討在尿素環境下的活性變化。活性測試(Activity assay)與螢光光譜(Fluorescence spectrum)等實驗結果證明了ZIF-90對酵素產生空間限制的假設,也證明了尿素使酵素失活的機制與酵素構形相關。此外,酵素有機金屬骨架複合材料在其他嚴苛環境如高溫、有機溶劑中能具有活性,同時藉由螢光光譜的結構測定,討論其他嚴苛環境中酵素活性與構形的關聯性。
摘要(英) Recently, our group has successfully embedded catalase (CAT) into zeolitic imidazolate frameworks-90 (ZIF-90) via de novo approach. In the de novo approach, the ZIF-90 are grown around the enzyme molecules under a mild synthetic condition. Remarkably, the biological activity of biocomposites is able to be maintained as proteinase K, the enzyme that can digest proteins, is existing with large molecule size due to the size selectivity of ZIF-90 porous.
In this work, we hypothesized that the enzyme molecules are confined in the tight mesoporous cavities left in the MOF crystals by growth of the framework around the enzyme molecules which reduces the structural changes of enzymes. In order to test this hypothesis, we exposed the CAT@ZIF-90 to and free CAT to a denature reagent (i.e., urea) and high temperatures (i.e., 80 °C) and examined their resulting catalytic activity, accompanied by fluorescence spectroscopy to monitor the structural conformation changes of the enzymes. The results show that embedded CAT maintains its biological function even when exposed to 6 M urea and 80 °C, respectively, while free CAT shows undetectable activity. A fluorescence spectroscopy study indicates that the structural conformation of the embedded CAT changes less under these denaturing conditions than free CAT. We have not only demonstrated that CAT maintains its biological function under unfolding conditions after being embedded in ZIF microcrystals via a de novo approach but also performed fluorescence spectroscopy to provide an in situ observation that the structural conformation of CAT in ZIFs is mostly maintained.
關鍵字(中) ★ 有機金屬骨架材料
★ 酵素有機金屬骨架材料
★ 水相原位創新法
★ 酵素摺疊效應
關鍵字(英) ★ MOF
★ CAT@ZIF-90
論文目次 目錄
中文摘要 I
Abstract III
目錄 IV
圖目錄 VII
表目錄 IX
第一章 緒論 1
1-1 金屬有機骨架材料 1
1-1-2 類沸石咪唑骨架材料 3
1-1-3 類沸石咪唑骨架材料-90/8 6
1-2 中孔洞材料 7
1-2-1 中孔洞分子篩SBA系列簡介 9
1-2-3 中孔洞分子篩MCF系列簡介 11
1-3 固定化酵素(Immobilized Enzyme) 13
1-4 過氧化氫酶(Catalase, CAT) 16
1-5 尿素分解酶 (Urease) 19
1-6 研究動機與目的 20
第二章 實驗部分 22
2-1 實驗藥品 22
2-2 實驗儀器與方法 25
2-2-1 實驗使用儀器 25
2-2-2 X射線粉末繞射儀 (Powder X-ray Diffractometer,XRD) 26
2-2-3 場發掃描式電子顯微鏡 (Field-emission Scanning ElectronMicroscope,SEM) 27
2-2-4 等溫氮氣吸/脫附儀 (Accelerated Surface Area and Porosimetry system,ASAP) 28
2-2-5 熱重分析儀 (Thermogravimetric Analyzer,TGA) 31
2-2-6 紫外線可見光吸收光譜儀 (UV-Visible Spectrophotometer) 31
2-2-7螢光光譜儀 (Fluorescence Spectrophotometer, FL) 32
2-2-8 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) 34
2-2-9 偵測蛋白質的濃度(Bradford Assay) 38
2-2-10 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation in Xylenol orange assay, FOX assay) 39
2-3原位創新合成類沸石咪唑骨架材料-90包覆酵素: 41
2-3-1原位創新合成類沸石咪唑骨架材料-90/8包覆過氧化氫酶 41
2-3-2原位創新合成類沸石咪唑骨架材料-90包覆尿素分解酶 42
2-4中孔矽材包覆過氧化氫酶 43
2-4-1中孔矽材MCF對過氧化氫酶(CAT@MCF)的包覆 43
2-4-2中孔矽材SBA-15對過氧化氫酶(CAT@ SBA-15)的包覆 44
2-5 CAT@ZIF-90/CAT@MCF/CAT@SBA-15蛋白質含量測定 45
2-6 CAT@ZIF-90/ CAT@MCF/CAT@SBA-15的活性測試 46
2-7類沸石咪唑骨架-90包覆尿素分解酶的活性測試 46
第三章 結果與討論 48
3-1類沸石咪唑骨架材料-90與過氧化氫酶複合材料(CAT@ZIF-90)鑑定 48
3-2酵素有機金屬複合材料(CAT@ZIF-90)在尿素環境下穩定性與擴散狀況之探討 51
3-3酵素有機金屬複合材料(CAT@ZIF-90)與酵素中孔矽材蛋白質結構摺疊效應探討 55
3-4其他變性環境中酵素有機金屬骨架複合材料蛋白質結構與性之關聯 60
第四章 結論 63
第五章 未來展望 64
5-1 異位調節(Allosteric Regulation)的酵素機制探討 64
5-2動態動力學離析(Dynamic Kinetic Resolution, DKR) 66
第六章 參考文獻 68
第七章 附錄 75

參考文獻 1. Yaghi, O.M.O.K., M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J., , Reticular synthesis and the design of new materials. Nature, 2003. 423( 6941): 705-714.
2. Furukawa, H.C., K. E.; O’Keeffe, M.; Yaghi, O. M., , The Chemistry and Applications of Metal-Organic Frameworks. Science, 2013. 341(6149).
3. Suh, M.P.P., H. J.; Prasad, T. K.; Lim, D.-W., , Hydrogen Storage in Metal–Organic Frameworks. . Chem. Rev., 2011. 112(2): 782-835.
4. Getman, R.B.B., Y.-S.; Wilmer, C. E.; Snurr, R. Q.,, Review and Analysis of Molecular Simulations of Methane, Hydrogen, and Acetylene Storage in Metal–Organic Frameworks. Chem. Rev, 2011. 112(2): 703-723.
5. Li, J.-R.S., J.; Zhou, H.-C., Metal–Organic Frameworks for Separations. Chem. Rev., 2011. 112(2): 869-932.
6. Yoon, M.S., R.; Kim, K., Homochiral Metal–Organic Frameworks for Asymmetric Heterogeneous Catalysis. Chem. Rev., 2011. 112(2): 1196-1231.
7. Horcajada, P.G., R.; Baati, T.; Allan, P. K.; Maurin, G.; Couvreur, P.; Férey, G.; Morris, R. E.; Serre, C., Metal–Organic Frameworks in Biomedicine. Chem. Rev. , 2011. 112(2): 1232-1268.
8. Kreno, L.E.L., K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T., Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev. , 2011. 112(2): 1105-1125.
9. W. J. Rieter, K.M.L.T., and W. Lin*, Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. J. Am. Chem. Soc., 2007. 129(32): 9852–9853.
10. Bétard, A.F., R. A., Metal–Organic Framework Thin Films: From Fundamentals to Applications. Chem. Rev., 2011. 112(2): 1055-1083.
11. Yoon, M.S., K.; Natarajan, S.; Kim, K., Proton Conduction in Metal–Organic Frameworks and Related Modularly Built Porous Solids. . Angew. Chem. Int. Ed. , 2013. 52(10): 2688-2700.
12. Li, S.-L.X., Q., Metal-organic frameworks as platforms for clean energy. Energy Environ. Sci., 2013. 6(6): 1656-1683.
13. B. Li, H.-M.W., Y. Cui, W. Zhou, G. Qian,* and B. Chen*, Emerging Multifunctional Metal–Organic Framework Materials. Adv. Mater., 2016. 28(40): 8819-8860.
14. H. Park, S.K., B. Jung, M. H. Park, Y. Kim, and M. Kim, Defect Engineering into Metal–Organic Frameworks for the Rapid and Sequential Installation of Functionalities. Inorganic Chemistry Communications, 2018. 57 (3): 1040-1047.
15. Rabenau, A., The Role of Hydrothermal Synthesis in Preparative Chemistry. . Angew. Chem., Int. Ed. Engl., 1985. 24(12): 1026-1040.
16. Klinowski, J.A.P., F. A.; Silva, P.; Rocha, J., Microwave-Assisted Synthesis of Metal-Organic Frameworks. Dalton Trans., 2011. 40(2): 321-330.
17. Ameloot, R.S., L.; Fransaer, J.; Alaerts, L.; Sels, B. F.; De Vos, D. E., Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mater., 2009. 21(13): 2580-2582.
18. Pichon, A.L.-G., A.; James, S. L., Solvent-free synthesis of a microporous metal-organic framework. CrystEngComm, 2006. 8(3): 211-214.
19. Qiu, L.-G.L., Z.-Q.; Wu, Y.; Wang, W.; Xu, T.; Jiang, X., Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun., 2008(31): 3642-3644.
20. Z. Wang, D.A., Arnau C.‐S., C. D. S. Brites,I. Imaz,D. Maspoch, J. Rocha, L. D. Carlos, Lanthanide–Organic Framework Nanothermometers Prepared by Spray‐Drying. Adv. Funct. Mater., 2015. 25v(19): 2824-2830.
21. Marta R.-M., C.A.-C., A. W. Thornton, I. Imaz , D. Maspoch and M. R. Hill New synthetic routes towards MOF production at scale. Chem. Soc. Rev., 2017. 46: 3453-3480.
22. Stock, N.B., S., Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev., 2011. 112(2): 933-969.
23. Banerjee, R.P., A.; Wang, B.; Knobler, C.; Furukawa, H.; O′Keeffe, M.; Yaghi, O. M., High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. . Science, 2008. 319(5865): 939-943.
24. Phan, A.D., C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’Keeffe, M.; Yaghi, O. M., Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. . Acc. Chem. Res., 2009. 43(1): 58-67.
25. N. Masciocchi, S.B., E. Cariati, F. Cariati, S. Galli, A. Sironi, , Extended Polymorphism in Copper(II) Imidazolate Polymers: A Spectroscopic and XRPD Structural Study. Inorg. Chem., 2001. 40(23): 5897-5905.
26. X.-C. Huang, Y.-Y., Lin, J.-P. Zhang, X.-M. Chen, Ligand-Directed Strategy for Zeolite-Type Metal-Organic FrameworksL Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed., 2006. 45(10): 1557-1559.
27. Park, K.S.N., Z.; Côté, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. , Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006. 103(27): 10186-10191.
28. Pérez-Pellitero, J.A., H.; Siperstein, F. R.; Pirngruber, G.; Nieto-Draghi, C.; Chaplais, G.; Simon-Masseron, A.; Bazer-Bachi, D.; Peralta, D.; Bats, N., Adsorption of CO2, CH4, and N2 on Zeolitic Imidazolate Frameworks: Experiments and Simulations. . Chem. Eur. J. , 2010. 16(5): 1560-1571.
29. Pan, Y.L., Z., Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chem. Commun., 2011. 47(373): 10275-10277.
30. Wu, H.Z., W.; Yildirim, T., Hydrogen Storage in a Prototypical Zeolitic Imidazolate Framework-8. . J. Am. Chem. Soc., 2007. 129(17): 5314-5315.
31. Kuo, C.-H.T., Y.; Chou, L.-Y.; Sneed, B. T.; Brodsky, C. N.; Zhao, Z.; Tsung, C.-K., Yolk–Shell Nanocrystal@ZIF-8 Nanostructures for Gas-Phase Heterogeneous Catalysis with Selectivity Control. J. Am. Chem. Soc., 2012. 134(35): 14345-14348.
32. Chen, E.-X.Y., H.; Zhang, J., Zeolitic Imidazolate Framework as Formaldehyde Gas Sensor. . Inorg. Chem., 2014. 53(11): 5411-5413.
33. Vasconcelos, I.B.S., T. G. d.; Militao, G. C. G.; Soares, T. A.; Rodrigues, N. M.; Rodrigues, M. O.; Costa, N. B. d.; Freire, R. O.; Junior, S. A., Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. . RSC Adv., 2012. 2(25): 9437-9442.
34. Morris, W.D., C. J.; Furukawa, H.; Banerjee, R.; Yaghi, O. M., Crystals as Molecules: Postsynthesis Covalent Functionalization of Zeolitic Imidazolate Frameworks. J. Am. Chem. Soc., 2008. 130(38): 12626-12627.
35. Everett, D.H., Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. Pure Appl. Chem., 1972. 31(4): 577-638.
36. Hudson, S.P.P., R. F.; Langer, R.; Kohane, D. S. , The biocompatibility of mesoporous silicates. Biomaterials 2008(30): 4045-4055.
37. Lee, C.-H.L., T.-S.; Mou, C.-Y. , Mesoporous Materials for Encapsulating Enzymes. Nano Today, 2009. 4: 165-179.
38. B. H. Lee, J.O., H. H. Tseng, Rajarao J.,H. Huff, Gate stack technology for nanoscale devices. Mater. Today, 2006. 9(6): 32-41.
39. Dáša Halamová, M.B., Vladimír Zeleňák, Taťána Gondová, UllaVainioc, Naproxen drug delivery using periodic mesoporous silica SBA-15. Appl. Surf. Sci., 2010. 256(22): 6489-6494.
40. Appell M, J.M., D.-K. MA, Removal of patulin from aqueous solutions by propylthiol functionalized SBA-15. Hazard Mater. , 2011. 187: 150-156.
41. Beck, J.S.V., J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates J. Am. Chem. Soc. 1992, 114, 10834, 1992. 114(27): 10834-10843.
42. Huo, Q., et al., Generalized synthesis of periodic surfactant/inorganic composite materials. Nature, 1994. 368(6469): 317-321.
43. Huo, Q., et al., Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays. Chemistry of Materials, 1994. 6(8): 1176-1191.
44. Sakamoto, Y., et al., Direct imaging of the pores and cages of three-dimensional mesoporous materials. Nature, 2000. 408(6811): 449-453.
45. Kim, M.J. and R. Ryoo, Synthesis and Pore Size Control of Cubic Mesoporous Silica SBA-1. Chemistry of Materials, 1999. 11(2): 487-491.
46. Tanev, P.T. and T.J. Pinnavaia, A Neutral Templating Route to Mesoporous Molecular Sieves. Science, 1995. 267(5199): 865-867.
47. Beck, J.S., et al., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society, 1992. 114(27): 10834-10843.
48. Zhao, D., et al., Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science, 1998. 279(5350): 548-552.
49. Liu, J., et al., Hybrid Mesoporous Materials with Functionalized Monolayers. Advanced Materials, 1998. 10(2): 161-165.
50. Stein, A., B.J. Melde, and R.C. Schroden, Hybrid Inorganic–Organic Mesoporous Silicates—Nanoscopic Reactors Coming of Age. Advanced Materials, 2000. 12(19): 1403-1419.
51. Israelachvili, J.N., D.J. Mitchell, and B.W. Ninham, Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 1976. 72(0): 1525-1568.
52. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359(6397): 710-712.
53. Lee, Y.S., D. Surjadi, and J.F. Rathman, Effects of Aluminate and Silicate on the Structure of Quaternary Ammonium Surfactant Aggregates. Langmuir, 1996. 12(26): 6202-6210.
54. Ko, C.H. and R. Ryoo, Imaging the channels in mesoporous molecular sieves with platinum. Chemical Communications, 1996. 0(21): 2467-2468.
55. Abe, T., et al., Preparation and characterization of Fe2O3 nanoparticles in mesoporous silicate. Journal of the Chemical Society, Chemical Communications, 1995. 0(16): 1617-1618.
56. Tsang, S.C., et al., Immobilization of small proteins in carbon nanotubes: high-resolution transmission electron microscopy study and catalytic activity. Journal of the Chemical Society, Chemical Communications, 1995. 0(17): 1803-1804.
57. Schmidt-Winkel, P., et al., Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. Journal of the American Chemical Society, 1998. 121(1): 254-255.
58. Lettow, J.S., et al., Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir, 2000. 16(22): 8291-8295.
59. Messing, R.A., Chapter 1 - INTRODUCTION AND GENERAL HISTORY OF IMMOBILIZED ENZYMES In Immobilized Enzymes for Industrial Reactors, 1975. Messing, R. A., Ed. Academic Press: : 1-10.
60. Datta, S., L.R. Christena, and Y. Rajaram, Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013. 3(1): 1-9.
61. Brady, D. and J. Jordaan, Advances in enzyme immobilisation. Biotechnology Letters, 2009. 31(11): 1639-1650.
62. Chen, Y., et al., Size-Selective Biocatalysis of Myoglobin Immobilized into a Mesoporous Metal–Organic Framework with Hierarchical Pore Sizes. Inorganic Chemistry, 2012. 51(17): 9156-9158.
63. Wong, L.S., J. Thirlway, and J. Micklefield, Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. Journal of the American Chemical Society, 2008. 130(37): 12456-12464.
64. Hsieh, H.-J., P.-C. Liu, and W.-J. Liao, Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnology Letters, 2000. 22(18): 1459-1464.
65. Ispas, C., I. Sokolov, and S. Andreescu, Enzyme-functionalized mesoporous silica for bioanalytical applications. Analytical and Bioanalytical Chemistry, 2009. 393(2): 543-554.
66. Bernfeld, P. and J. Wan, Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science, 1963. 142(3593): 678-679.
67. Shen, Q., et al., Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochemistry, 2011. 46(8): 1565-1571.
68. Wang, Z.-G., et al., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B: Enzymatic, 2009. 56(4): 189-195.
69. Wen, H., et al., Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchimica Acta, 2011. 175(3-4): 283-289.
70. Kim, J., H. Jia, and P. Wang, Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnology Advances, 2006. 24(3): 296-308.
71. Halliwell, B.G., J. M. C., The definition and measurement of antioxidants in biological systems. Free Radical Biol. Med., 1995. 18(1): 125-126.
72. Valko, M.L., D.; Moncol, J.; Cronin, M. T. D.; Mazur, M.; Telser, J., Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007. 39(1): 44-84.
73. BLOKHINA, O.V., E.; FAGERSTEDT, K. V., Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot., 2003. 91(2): 179-194.
74. Fita, I.R., M. G., The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci., 1985. 82(6): 1604-1608.
75. Chance, B., EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. . J. Biol. Chem. , 1952. 194(2): 471-481.
76. Sumner, J.B., The Isolation and Crystallization of the Enzyme Urease. Preliminary Paper J. Biol. Chem., 1962. 69: 435-441.
77. Mobley HL, H.R., Microbial ureases: significance, regulation, and molecular characterization. Microbiological reviews, 1989. 53(1185-108).
78. Agrawal A, G.A., Chandra M, Koowar S Role of Helicobacter pylori infection in the pathogenesis of minimal hepatic encephalopathy and effect of its eradication. Indian Journal of Gastroenterology, 2011. 30(1): 29-32.
79. F.-K. Shieh, S.-C.W., C.-I. Yen, C.-C. Wu, S. Dutta, L.-Y. Chou, J. V. Morabito, P. Hu, M.-H. Hsu, Kevin C.-W. Wu* and C.-K. Tsung*, Imparting Functionality to Biocatalysts via Embedding Enzymes into Nanoporous Materials by a de novo Approach: Size-Selective Sheltering of Catalase in Metal-Organic Framework Microcrystals. J. Am. Chem. Soc. , 2015. 137(13): 4276–4279.
80. B. J. Bennion, V.D., The molecular basis for the chemical denaturation of proteins by urea. Proc Natl Acad Sci U S A., 2003 100(9): 5142–5147.
81. Jauncey, G.E.M., The Scattering of X-Rays and Bragg′s Law. Proc. Natl. Acad. Sci., 1924. 10(2): 57-60.
82. Sing, K.S.W.E., D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T., Reporting Physisorption Data for Gas/Solid Systems with Special Reference to the Determination of Surface Area and Porosity. Vibrational Spectroscopy, 1985. 57(4): 17.
83. Brunauer, S.E., P. H.; Teller, E., Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc., 1938. 60(2): 309-319.
84. Nalwa, H.S., Handbook of Kuminescence, Display Materials and Device. American Scientific Publishers, 2003. Vol. 3.
85. S. Shionoya, W.M.Y., Phosphor Handbook. CRC Press: Boca Raton, FL, USA. 1998.
86. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976. 72(1–2): 248-254.
87. Jiang, Z.-Y., A.C.S. Woollard, and S.P. Wolff, Hydrogen peroxide production during experimental protein glycation. FEBS Letters, 1990. 268(1): 69-71.
88. Ou, P. and S.P. Wolff, A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. Journal of Biochemical and Biophysical Methods, 1996. 31(1–2): 59-67.
89. Nelson, D.P. and L.A. Kiesow, Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Analytical Biochemistry, 1972. 49(2): 474-478.
90. Han, Y.L., S. S.; Ying, J. Y. , Spherical Siliceous Mesocellular Foam Particles for High-Speed Size Exclusion Chromatography. Chem. Mater., 2007. 19(9): 2292–2298.
91. Štefanac, Z.T., M.; Raković-tresić, Z., Spectrophotometric Method of Assaying Urease Activity. Anal. Lett., 1969, 2, 197., 1969. 2(4): 197-210.
92. M. Ueda, H.K., T. Yoshida, N. Kamasawa, M. Osumi, A.Tanaka, A Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiology Letters, 2003. 219(1): 93-98.
93. Dordick*, K.R.a.J.S., How Do Organic Solvents Affect Peroxidase Structure and Function? Biochemistry, 1992: 2588-2598
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2019-1-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明