參考文獻 |
[1] Bruzzone, L. and S. B. Serpico, 1997: An Iterative Technique for the Detection of Land-cover Transitions in Multispectral Remote-Sensing Images, IEEE Transactions on Geoscience and Remote Sensing, 35, 858-867.
[2] Chavez, P. S. and D. J. Mackinnon, 1994: Automatic Detection of Vegetation Changes in the Southwestern United States Using Remotely Sensed Images, Photogrammetric Engineering and Remote Sensing, 60, 571-583.
[3] Grover, K. D., S. Quegan, and C. da Costa Freitas, 1999: Quantitative Estimation of Tropical Forest Cover by SAR, IEEE Transactions on Geoscience and Remote Sensing, 37, 479-490.
[4] Hame, T., I. Heiler, and J. San Miguel-Ayanz, 1998: An Unsupervised Change Detection and Recognition System for Forest, International Journal of Remote Sensing, 19, 1079-1099.
[5] Ridd, M. K. and J. Liu, 1998: A Comparison of Four Algorithms for Change Detection in an Urban Environment, Remote Sensing of Environment, 63, 95-100. [6] Quegan, S., T. Le Toan, J. J. Yu, F. Ribbes, and N. Floury, 2000: Multitemporal ERS SAR Analysis Applied to Forest Mapping, IEEE Transactions on Geoscience and Remote Sensing, 38, 741-753.
[7] Chang, C. P., J. Y. Yen, A. Hooper, F. M. Chou, Y. A. Chen, C. S. Hou, W. C. Hung, and M. S. Lin, 2010: Monitoring of Surface Deformation in Northern Taiwan Using DInSAR and PSInSAR Techniques, Terre. Atoms. Ocean. Sci., 21, 447-461.
63
[8] Bovolo, F. and L. Bruzzone, 2005: A Detail-Preserving Scale-Driven Approach to Change Detection in Multitemporal SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 43, 2963-2972.
[9] Bruzzone, L. and D. F. Prieto, 2000: Automatic Analysis of the Difference Image for unsupervised Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 38, 1171-1182.
[10] Lu, D., P. Mausel, E. Brondizio, and E. Moran, 2004: Change Detection Techniques, International Journal of Remote Sensing, 25, 2365-2401.
[11] Lee, J. S., 1980: Digital Image Enhancement and Noise Filtering by Use of local Statistics, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 165-168.
[12] Frost, V. S., J. A. Stiles, K. S. Shanmugan, and J. C. Holtzman, 1982: A Model for Radar Images and Its Application to Digital Filtering of Multiplicative Noise, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-4, 157-165.
[13] Lopes, A., E. Nerzy, R. Touzi, and H. Laur, 1990: Maximum a Posteriori Speckle Filtering and First Texture Models in SAR Images, IEEE International Geoscience and Remote Sensing Symposium Proceedings (IGARSS 1990), 3, 2409-2412.
[14] Solbø, S. and T. Eltoft, 2004: Homomorphic Wavelet-based Statistical Despeckling of SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 42, 711-721.
[15] Singh, P. and R. Shree, 2017: Statistical Quality Analysis of Wavelet Based
SAR Images in Despeckling Process, Asian Journal of Electrical Sciences, 6, 1-18.
[16] Bazi, Y., L. Bruzzone, and F. Melgani, 2005: An Unsupervised Approach Based on the Generalized Gaussian Model to Automatic Change Detection in Multitemporal SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 43, 874–887.
[17] Tzeng, Y. C. and K. S. Chen, 2007: Change Detection in Synthetic Aperture Radar Images Using a Spatially Chaotic Model, Optical Engineering, 46, 1-9.
[18] Chou, N. S., Y. C. Tzeng, K. S. Chen, C. T. Wang and K. C. Fan, 2009: On the application of a spatial chaotic model for detecting landcover changes in synthetic aperture radar images, Journal of Applied Remote Sensing, 3.
[19] Sarkar, N. and B. B. Chaudhuri, 1994: An Efficient Differential Box-Counting Approach to Compute Fractal Dimension of Images, IEEE Transactions on Systems, Man, and Cybernetics, 24, 115-120.
[20] Wieland, M., W. Liu and F. Yamazaki, 2016: Learning Change from Synthetic Aperture Radar Images: Performance Evaluation of a Support Vector Machine to Detect Earthquake and Tsunami-Induced Changes. Remote Sens., 8, 792, doi:10.3390/rs8100792.
[21] Zeng, Y., J. Zhang, and J. L. Van Genderen, 2008: Change Detection Approach to SAR and Optical Image Integration. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII.
[22] Forouzanfar, M. and H. Abrishami-Moghaddam, 2010: Ultrasound Speckle
Reduction in the Complex Wavelet Domain, in Principles of Waveform Diversity and Design, M. Wicks, E. Mokole, S. Blunt, R. Schneible, and V. Amuso (eds.), SciTech Publishing, Section B - Part V, 558-77.
[23] Jayaraman et al., 2009: Digital Image Processing, Tata McGraw Hill Education, 272.
[24] Rosin, P. and J. Collomosse, 2012: Image and Video-Based Artistic Stylisation, Springer, 92.
[25] Paolini, L., et al., 2006: Radiometric correction effects in Landsat multi‐ date/multi‐sensor change detection studies, International Journal of Remote Sensing, 27, 685‐704.
[26] Nielsen, A., 1998: Multivariate Alteration Detection (MAD) and MAF Postprocessing in Multispectral, Bitemporal Image Data: New Approaches to Change Detection Studies, Remote Sensing of Environment, 64, 1-19.
[27] Nielsen, A. A., 2002: Multiset canonical correlations analysis and multispectral, truly multitemporal remote sensing data, IEEE Transactions on Image Processing, 11, 293-305.
[28] Dai, X. and S. Khorram, 1998: The effects of image misregistration on the accuracy of remotely sensed change detection, IEEE Transactions on Geoscience and Remote Sensing, 36, 1566-1577.
[29] Debotosh, B., 2014: Adaptive polar transform and fusion for human face image processing and evaluation, Human-Centric Computing and Information Science, 4, 1–18.
[30] Lee, J. S., et al., 1999: Polarimetric SAR speckle filtering and its
implication for classification, IEEE Transactions on Geoscience and Remote Sensing, 37, 2363‐2373.
[31] Martinez, C. L. and X. Fabregas, 2003: Polarimetric SAR speckle noise model, IEEE Transactions on Geoscience and Remote Sensing, 41, 2232-2242.
[32] Zaman, M. R. and C. R. Moloney, 1993: A Comparison of Adaptive Filters for Edge ‐ preserving Smoothing of Speckle Noise, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 1993).
[33] Abarbanal, H. D. I., 1996: Analysis of Observed Chaotic Data, Springer-Verlag New York.
[34] Chen, W. S., S. Y. Yuan, and C. M. Hsieh, 2003: Two Algorithms to Estimate Fractal Dimension of Gray-level Images, Opt. Eng., 42, 2452–2464.
[35] Chiu S., 2005: A constant false alarm rate (CFAR) detector for RADARSAT-2 along-track interferometry, Can. J. Remote Sensing, 31, 1, 73-84.
[36] Chervonenkis, A. Y., 2013: Early history of support vector machines, Empirical Inference, Springer, 13-20.
[37] Boser, B. E., I. Guyon, and V. N. Vapnik, 1992: A training algorithm for optimal margin classifiers, In Proceedings of the Fifth Annual Workshop of Computational Learning Theory, 5, 144-152.
[38] Cortes, C. and V. N. Vapnik, 1995: Support-vector networks, Machine Learning, 20, 273–297.
[39] Burges, C. J. C., 1998: A Tutorial on Support Vector Machines for Pattern Recognition, Data Mining and Knowledge Discovery 2, 121-167.
[40] Hastie, T., R. Tibshirani and J. Friedman, 2009: The elements of Statistical
Learning: Data Mining, Inference, and Prediction, Springer, 134.
[41] MacQueen, J. B., 1967: Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, University of California Press, 281–297.
[42] Goodfellow, I. J., et al., 2014:Generative Adversarial Networks. CoRR abs, 1406-2661.
[43] Kohonen , T., 1990: The Self-organizing map, Proceedings of the IEEE, 78, 9, 1464-1480.
[44] Grossberg, S., 2013: Adaptive resonance theory: how a brain learns to consciously attend, learn, and recognize a changing World. Neural Networks 37, 1-47.
[45] Ayyaz M. N., I. Javed and W. Mahmood, 2012: Handwritten Character Recognition Using Multiclass SVM Classification with Hybrid Feature Extraction, Pakistan Journal of Engineering & Applied Science, 10, 57-67.
[46] Akbarizadeh, G., 2012: A New Statistical-Based Kurtosis Wavelet Energy Feature for Texture Recognition of SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 50, 4358-4368.
[47] Yekkehkhany, B., A. Safari, S. Homayouni, and M. Hasanlou, 2014: A Comparison Study of Different Kernel Functions for SVM-Based Classification of Multi-Temporal Polarimetry SAR Data, The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-2/W3, 281-285.
[48] Qu, J., C. Wang, and Z. Wang, 2003: Structure-Context Based Fuzzy Neural Network Approach for Automatic Target Detection, Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, 2, 767-769.
[49] Green, D. M. and J. A. Swets, 1996: Signal Detection Theory and Psychophysics, Wiley, New York.
[50] Staelin, D. H., 1966: Measurements and Interpretation of the Microwave Spectrum of the Terrestrial Atmosphere near 1 Centimeter Wavelength, Journal of Geophysical Research, 71, 2875-2881. |