以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:58 、訪客IP:3.133.124.80
姓名 鄧鈞懋(JUN-MAO DENG) 查詢紙本館藏 畢業系所 光電科學與工程學系 論文名稱 高功率脈衝磁控濺鍍成長透明導電膜 於可撓性塑膠基板之研究
(Research of Transparent Conductive Films on the Flexible Plastic Substrates Using High Power Impulse Magnetron Sputtering)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 可撓式基板材料為具有可連續捲對捲(roll-to-roll)生產優勢的新
世代基板技術,在材料上則需具備輕、薄、不易破碎以及攜帶方便、
可彎曲性之特性。欲探討分子結構與電荷傳導速率關連,受到分子濺
鍍成膜時的形貌影響。而 HIPIMS(高功率脈衝磁控濺鍍,high power
impulse magnetron sputtering)是一種以高功率脈衝電源進行磁控
濺鍍的技術,可在基材低溫度下得到無孔隙高密度的薄膜。在軟性基
板中,薄膜元件需經歷反覆撓曲,撓曲薄膜元件電性的影響是一有趣
課題。本實驗使用可撓曲之塑膠製備透明導電膜ITO,研究撓曲對其
載子傳遞能力之影響。本研究於塑膠基板上以HIPIMS方法製作可撓式
透明導電膜,並量測在不同應力下的元件特性。我們發現當元件受壓
應力彎曲,元件電性差異大,且可容忍之彎折次數較少;反之受張應
力彎曲時,則電性差異較平緩,而可容忍之彎折次數較多。我們認為
元件受應力的改變主要來自於薄膜內分子間作用力的變化:在張應力
狀態時,晶粒-晶粒間的平均自由徑變大使薄膜產生微裂痕,使得載
子遷移率較好;反之,當元件處於壓應力狀態時,晶粒-晶粒間的平
均自由徑變小使薄膜產生變形,載子遷移率因而下降。摘要(英) The flexible substrate material is a new generation substrate technology with the advantages of continuous roll-to-roll production. The material needs to be light, thin, not easily broken, and easy to carry and bend. The molecular structure is related to the charge conduction rate and is affected by the morphology of the film when it is sputtered by a molecule. HIPIMS (high power impulse magnetron sputtering) is a high-power pulsed power supply for magnetron sputtering, which provides a low-porosity film at low temperatures.
In a flexible substrate, the thin film component undergoes repeated flexing, and the electrical influence of the flexographic film component is an interesting subject. In this experiment, a transparent conductive
film ITO was prepared using a flexible plastic to study the effect of deflection on its carrier transport ability. In this study, a flexible transparent conductive film was fabricated on a plastic substrate by HIPIMS method, and the characteristics of the components under different stresses were measured. We found that when the component is bent by compressive stress, the electrical difference of the component is large,and the number of bends that can be tolerated is small. On the contrary,
when the tensile stress is bent, the electrical difference is gentle, and the number of bends that can be tolerated is large.
We believe that the change of the stress of the component mainly comes from the change of the intermolecular force in the film: in the tensile stress state, the average free diameter between the grains and the grains becomes large, which causes the film to have micro-cracks, which makes the carrier mobility better. On the contrary, when the element is in a compressive stress state, the average free diameter between the crystal grains and the crystal grains becomes small, and the film is deformed,and the carrier mobility is thus lowered.關鍵字(中) ★ 透明導電膜
★ 高功率脈衝磁控式濺鍍
★ 可撓曲性
★ 可靠度測試關鍵字(英) 論文目次 摘要----------------------------------------------I
Abstract------------------------------------------Ⅱ
致謝----------------------------------------------Ⅲ
目錄----------------------------------------------IV
圖目錄--------------------------------------------Ⅷ
表目錄-------------------------------------------ⅩIV
第一章 緒論----------------------------------------1
1-1 研究背景---------------------------------------1
1-2 可撓式基板簡介----------------------------------7
1-3 研究動機與目的---------------------------------10
第二章 基本理論------------------------------------12
2-1 ITO 透明導電膜之特性---------------------------12
2-1-1 與導電性質有關的量---------------------------12
2-1-2 In2O3 的電學特性與導電理論--------------------15
2-2 ITO 透明導電膜光學性質之理論--------------------17
2-2-1 與光學性質有關的係數--------------------------18
2-2-2 紫外光吸收區---------------------------------20
2-2-3 可見光與近紅外光干涉區------------------------21
2-3 薄膜應力定義-----------------------------------23
第三章 實驗設備與量測儀器---------------------------25
3-1 實驗流程與前置步驟------------------------------25
3-2 濺鍍系統---------------------------------------26
3-2-1 高功率脈衝磁控濺鍍----------------------------27
3-2-2 濺鍍條件對透明導電膜性質的影響-----------------28
3-2-3 基板溫度調整---------------------------------30
3-3 量測系統---------------------------------------31
3-3-1 光譜儀---------------------------------------31
3-3-2 Hall量測-------------------------------------31
3-3-3 四點探針量測----------------------------------34
3-3-4 表面輪廓儀Alpha-step profile meter------------34
3-3-5 UV Ozone-------------------------------------35
3-3-6 鉛筆硬度計------------------------------------36
3-3-7 附著性----------------------------------------36
第四章 實驗結果與分析--------------------------------37
4-1 實驗架構----------------------------------------37
4-2 濺鍍功率對 ITO 薄膜性質的影響--------------------37
4-2-1 濺鍍功率對ITO膜在Glass與PET基板的穿透率之影響---38
4-2-2 濺鍍功率對ITO膜在Glass與PET基板的反射率之影響---39
4-2-3 濺鍍功率對ITO膜在Glass與PET基板的吸收率之影響---40
4-2-4 濺鍍功率對ITO膜在Glass與PET基板的電性之影響-----41
4-3 脈衝時間對 ITO 薄膜性質的影響--------------------43
4-3-1 脈衝時間對ITO膜在Glass與PET基板的穿透率之影響---44
4-3-2 脈衝時間對ITO膜在Glass與PET基板的反射率之影響---45
4-3-3 脈衝時間對ITO膜在Glass與PET基板的吸收率之影響---46
4-3-4 脈衝時間對ITO膜在Glass與PET基板的電性之影響-----47
4-4 氧氣流量對 ITO 薄膜性質的影響--------------------50
4-4-1 氧氣流量對ITO膜在Glass與PET基板的穿透率之影響---51
4-4-2 氧氣流量對ITO膜在Glass與PET基板的反射率之影響---52
4-4-3 氧氣流量對ITO膜在Glass與PET基板的吸收率之影響---53
4-4-4 氧氣流量對ITO膜在Glass與PET基板的電性之影響-----54
4-5 濺鍍電壓對 ITO 薄膜性質的影響--------------------56
4-5-1 濺鍍電壓對ITO膜在Glass與PET基板的穿透率之影響---57
4-5-2 濺鍍電壓對ITO膜在Glass與PET基板的反射率之影響---58
4-5-3 濺鍍電壓對ITO膜在Glass與PET基板的吸收率之影響---59
4-5-4 濺鍍電壓對ITO膜在Glass與PET基板的電性之影響-----60
4-6 降低濺鍍電壓改變沉積率對薄膜性質影響--------------62
4-6-1 降低濺鍍電壓對ITO膜在PET基板的穿透率之影響------62
4-6-2 降低濺鍍電壓對ITO膜在PET基板的電性之影響--------63
4-7 撓曲狀態下的元件電性表現-------------------------64
4-7-1 量測方式--------------------------------------64
4-7-2 脈衝時間濺鍍 ITO 薄膜進行撓曲後電性表現---------65
4-7-3 撓曲次數與電性表現-----------------------------66
4-7-4 不同撓曲直徑下的電性分析-----------------------76
4-7-5 撓曲狀態下電性變化總結與分析--------------------82
4-7-6 撓曲模型--------------------------------------84
4-8 機械特性----------------------------------------84
4-8-1 硬度測試--------------------------------------84
4-8-2 附著性程度------------------------------------86
第五章 結論-----------------------------------------88
參考文獻--------------------------------------------90參考文獻 [1]楊明輝,“透明導電膜材料與成膜技術的新發展”,工業材料,
第189期,pp.161~174,(2000)。
[2]王家俊,“以射頻磁控濺鍍法成長摻雜氫之氧化鋅薄膜”,國立
成功大學化學工程研究所碩士論文,(2003)。
[3]E. G. Fu, D. M. Zhuang, G. Zhang, W. F. Yang, M. Zhao,
“Substrate temperature dependence of the properties of ZAO
thin films deposited by magnetron sputtering”,Applied
Surface Science, Vol 217,pp.88-94,(2003).
[4]M. Fox , “Optical Properties of Solids”, Published by
Oxford University Press,pp. 29 ,(2001).
[5]E. Shanthi, A. Banerjee, V. Dutta, and K. L. Chopra,
“Electrical and optical properties of tin oxide films doped
with F and (Sb+F)”, Journal of Applied Physics, 53 (3)
pp.1615-1621,(1982).
[6]T. Hata, S. Nakano, Y. Masuda, K. Sasaki, Y. Haneda,K.
Wasa,“Heteroepitaxial growth of YSZ films on Si(100)
substrate by using new metallic mode of reactive
sputtering”, Vol 51,pp.583-590,(1998).
[7]伸昌電機股份有限公司,“SPIK 2000A – pulse DC power
controller 型錄”,伸昌電機股份有限公司,2005 年。
[8]M. C. Wang, T. C. Chang, P. T. Liu, S. W. Tsao, and J. R.
Chen,“Analysis of Parasitic Resistance and Channel Sheet
Conductance of a-Si:H TFT under Mechanical Bending”,
Electrochem.and Solid-State Lett.,10(3),J49–J51,(2007).
[9]I. H. Peng, P. T. Liu, and T. B. Wu,“Effect of bias stress
on mechanically strained low temperature polycrystalline
silicon thin film transistor on stainless steel substrate”,
Applied Physics Letters 95, 041909,(2009).
[10]吳奕儒,“可撓式面板基板製程期待突破”,光連雙月刊,第
69期,光電科技工業協進會,(2007年5月)。
[11]黃俊欽,“塑料物性介紹 ”,國立高雄應用科技大學,網站:
http://godplace.myweb.hinet.net/tw/htm/06_info.htm。
[12]H.Kostlin,R.Jost,W.Lems,“Optical and electrical
properties of doped In2O3 films”,Phys.Status Solidi,Vol
29,pp. 87,(1975).
[13]J.R.Bellingham, W.A.Phillips, C.J.Adkins,“Intrinsic
performance limits in transparent conducting oxides”,
J.Mater.Sci.Lett.11 ,pp.263-265 ,(1992).
[14]E.Conwell and V.F. Weisskopf,“Theory of impurity
scattering in semiconductors”,Phys.Rev.77,388 ,(1950).
[15]C. Kittel,“Introduction to Solid State Physics”, 5th ed.,
John Wiley & Sons, New York (1976).
[16]N.Manavizadeh,A.Khodayari,E.AslSoleimani,S.Bagherzadeh,
M.H.Maleki,“Structural Properties of Post Annealed ITO
Thin Films at Different Temperatures”,Iran.J.Chem.Chem.
Eng,Vol 28,pp.57-61,(2009).
[17]J.C.C.Fan and J.B.Goodenough,“X-ray photoemission
spectroscopy studies of Sn-doped indium-oxide films”,
Journal of Applied Physics 48 ,3524,(1977).
[18]R.L.Weiher,“Electrical Properties of Single Crystals of Indium Oxide”,Journal of Applied Physics 33, 2834,(1962).
[19]K.L.Chopra ,S.Major,and D.K.Pandya ,“Thin Solid Films”,102,pp.1-46 ,(1983).
[20]黃少農,“高耐熱透明聚醚醯亞胺之合成及其應用於可撓式元
件界面接著性探討”,國立交通大學碩士論文,2009年。
[21]I.Hamberg, C.G.Granqvist, K.F.Berggren, B.E.Sernelius and L.Engstrom,“Band-gap widening in heavily Sn-doped
In203”,Phys Rev.B 30,3240,(1984).
[22]M.Fox,“Optical Properties of Solids”,published by
Oxford University Press , New York (2001).
[23]R.W. Hoffman,“Physics of nonmetallic Thin Films”,edited by C.H.S. Dupuy and A.Cachard, Plenum Press:New York, pp.273,(1976).
[24]S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet,P. Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel,“Photovoltaic Characterization of Dye-sensitized Solar Cells:Effect of Device Masking on Conversion Efficiency ”,Progress in Photovoltaics: Research and Applications, Vol.14, pp. 589-601, (2006).
[25]K. Sarakinos, J. Alami, S. Konstantinidis, “High power pulsed magnetron sputtering: A review on scientific and engineering state of the art”, Surface and Coatings
Technology ,204, pp.1661–1684 ,(2010).
[26]S. Ishibashi, Y. Higuchi, Y. Ota, and K.Nakamura,“Low
resistivity indium–tin oxide transparent conductive films. II. Effect of sputtering voltage on electrical
property of films”,Journal of Vacuum Science & Technology
A 8, 1403, (1998).
[27]K.Ishibashiand Y.Shiokawa,“Preparing Condutive
Transparent ITO Films on Glass at 200° C by RF and DC
Magnetron Sputtering”,Proc. Of the 3rd ISSP,Tokyo 423 ,(1995).
[28]透明導電膜之技術,日本學術振興會 透明酸化物光‧電子材料
第 166 委員會編,Ohmsha 發行,1999 年,第 179 頁。
[29]Fumiya SHOJI and Saburo NAGATA,“低圧プラズマスパッタリ
ング法による金属薄膜の内部応力”, Department of Applied
Physics,Faculty of Engineering Kob University,
Rokkodai-cho, Nada-ku, Kobe,(1972).指導教授 陳昇暉 審核日期 2018-10-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare