摘要(英) |
In this study, we discuss how to use a two-step holographic process to create a 360-degree viewable conical-type holographic stereogram, which can generate real achromatic image for viewing.
In the first step, we elongate the converging point of the object wave to a silt, which is along to the achromatic angle, by a two dimensional diffuser, and then we record this object wave as the master hologram. In the second step, when reconstructing the information stored in master hologram, the master hologram is divided into two parts, belonging to blue image information and red image information. In order to produce achromatic image, we need to control relative exposure energy for two parts of master hologram, their width, and wavelength pair to change relative diffraction efficiency of these two partial holograms. Finally, when we reconstruct the final hologram using white light from point source, it diffracts light of different wavelengths to the overlapping area, which then achieves achromatic effect for the observed image.
Using the theory of diffraction to simulate experimental viewing system can find that the wave vector of the image wave minus an integral number of the normal vector of hologram is equal the grating vector plus the wave vector of the reconstruction wave. And then use the theory to revise the wave vector of the image wave. The important part of this study is to create a floating achromatic image for conical hologram. So, finally we deform the original 2D images advance and let the width of the silt shrink to 0.15cm to record the master hologram. By viewing the final hologram at paper, larger distance, we are able to observe on achromatic, none deformed real image. |
參考文獻 |
[1].D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948)
[2].E. N. Leith, and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Amer. 52, 1123 (1962)
[3].E. N. Leith, and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Amer. 53, 1377 (1963)
[4].D. J. De Bitetto, “Bandwidth reduction of hologram transmission system by elimination of vertical parallax,” Appl. Phys. Lett. 12, 176 (1968)
[5].S. A. Benton, “Hologram reconstruction with extended light sources,” J. Opt. Soc. Am. 59, 1545 (1969)
[6].L. Cross, “The multiplex technique for cylindrical holographic stereograms,” Proc. SPIE’s annual meeting, San Diego, California, August (1977)
[7].S. A. Benton, “Survey of holographic stereograms,” Proc. SPIE, 367, 15-19 (1982)
[8].S. A. Benton, “Photographic holography,” Proc. SPIE, 391, 12-15 (1982).
[9].K. Okada, S. Yoshii, Y. Yamaji and J. Tsujichi, “Conical holographic stereograms,” Opt. Comm., 73, 347-350 (1989).
[10].Y. S. Cheng, W. H. Su and R. C. Chang, “ Disk-type multiplex holography,” Appl. Opt., 38, 3093-3100 (1999).
[11].陳秋萍,“影像前浮式之圓錐型成像面複合全像術”,國立中央大學光電科學研究所碩士論文,民國八十八年。
[12].郭浩然,“成像面圓錐型複合全向之特性分析”,國立中央大學光電科學研究所碩士論文,民國九十年。
[13].郭博裕,“單步驟反射式成像面圓錐型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零一年。
[14].林斯巖,“彎折物面之反射式成像面圓錐型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零二年。
[15].黃令杰,“改良型反射式虛像圓錐複合全像術”, 國立中央大學光電科學與工程學系碩士論文,民國一百零三年。
[16].詹明翰,“以彎折與平面物面拍攝至圓錐底片面之反射式複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零五年。
[17].陳政樺,“影像黑白化之圓盤型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零五年。
[18].郭馥萱,“影像黑白化之圓錐型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零六年。
[19].陳孟如,“實像黑白化之圓盤型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零六年。
[20].Young, T., 1802. Bakerian Lecture: On the Theory of Light and Colours. Phil. Trans. R. Soc. Lond. 92:12-48. doi: 10.1098/rstl. 1802.0004
[21].S. A. Benton, “Achromatic images from white-light transmission holograms,” J. Opt. Soc. Am. 68, 1441 (1978)
[22].宋元評,“球型複合全像術理論”,國立中央大學光電科學與工程學系碩士論文,民國一百零六年。
[23].G. Wyszecki, and W. S. Stiles, Color Science: Concepts and Method, Quanti-tative Data and Formulae (2nd ed.), John Wiley & Sons, New York, 1982
[24].S. A. Benton, “Achromatic holographic stereograms,” J. Opt. Soc. Am. 71, 1568A (1981)
[25].Y. S. Cheng, and R. C. Chang, “Image-plane cylindrical holographic stereogram,” Appl. Opt. 39, 4058-4069 (2000)
[26].王璽曄,”平面物面拍攝彎折底片面之反射式圓柱型複合全像術”,國立中央大學光電科學與工程學系碩士論文,民國一百零五年。 |