參考文獻 |
[1]T. Sekitani, U. Zschieschang, H. Klauk, & T. Someya. (2010). Flexible organic transistors and circuits with extreme bending stability. Nature materials, 9, 1015-1022.
[2]C.-L. Fan, F.-P. Tseng, H.-L. Lai, B.-J. Sun, K.-C. Chao, Y.-C. Chen. (2013). A Novel LTPS-TFT Pixel Circuit to Compensate the Electronic Degradation for Active-Matrix Organic Light-Emitting Diode Displays. International Journal of Photoenergy, 30, 839301.
[3]K.-Y. Wu, Y.-T. Tao, C.-C. Ho, W.-L. Lee, & T.-P. Perng. (2011). High-performance space-charge-limited transistors with well-ordered nanoporous aluminum base electrode. Applied Physics Letters, 99, 093306.
[4]Y.-C. Chao, C.-H. Chung, H.-W. Zan, H.-F. Meng, & M.-C. Ku. (2011). High-performance vertical polymer nanorod transistors based on air-stable conjugated polymer. Applied Physics Letters, 99, 233308.
[5]Y.-C. Chao, M.-C. Ku, W.-W. Tsai, H.-W. Zan, H.-F. Meng. (2010). Polymer space-charge-limited transistor as a solid-state vacuum tube triode. Applied Physics Letters, 97, 223307.
[6]H.-C. Lin, H.-W. Zan, Y.-C. Chao, M.-Y. Chang, & H.-F. Meng. (2015). Review of a solution-processed vertical organic transistor as a solid-state vacuum tube. Semiconductor Science and Technology, 30, 054003.
[7]K. Fujimoto. (2005). Organic Static Induction Transistors with Nano-Hole Arrays Fabricated by Colloidal Lithography. e-Journal of Surface Science and Nanotechnology, 3, 327-331.
[8]K. Fujimoto, T. Hiroi, K. Kudo, & M. Nakamura. (2007). High-Performance, Vertical-Type Organic Transistors with Built-In Nanotriode Arrays. Advanced Materials, 19, 525-530.
[9]L. Ma, Y. Yang. (2004). Unique architecture and concept for high-performance organic transistors. Applied Physics Letters, 85, 5084.
[10]J.-F. Chang, Y.-C. Lai, R.-H. Yang, Y.-W. Yang, & C.-H. Wang. (2017). Improvement of vertical organic field-effect transistors by surface modification of metallic source electrodes. Applied Physics Express, 10, 11601.
[11]C.-Y. Chen, Y.-C. Chao, H.-F. Meng, & S.-F. Horng. (2008). Light-emitting polymer space-charge-limited transistor. Applied Physics Letters, 93, 223301.
[12]K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, & K. Kudo. (2008). Improvement of Metal–Insulator–Semiconductor-Type Organic Light-Emitting Transistors. Japanese Journal of Applied Physics, 47, 1889-1893.
[13]K. Nakamura, T. Hata, A. Yoshizawa, K. Obata, H. Endo, & K. Kudo. (2006). Metal-insulator-semiconductor-type organic light-emitting transistor on plastic substrate. Applied Physics Letters, 89, 103525.
[14]B. Liu, M. A. McCarthy, Y. Yoon, D.-Y. Kim, Z.-C. Wu, F. So, P. H. Holloway, J. R. Reynolds, J.-G., & A. G. Rinzler. (2008). Carbon-Nanotube-Enabled Vertical Field Effect and Light-Emitting Transistors. Advanced Materials, 20, 3605-3609.
[15]M. A. McCarthy, B. Liu, E. P. Donoghue, I. Kravchenko, D. Y. Kim, F. So, A. G. Rinzler. (2011). Low-Voltage, Low-Power, Organic Light-Emitting Transistors for Active Matrix Displays. Science, 332, 570-573.
[16]W. D. Gill. (1972). Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. Journal of Applied Physics, 43, 5033.
[17]K. Horiuchi, S. Uchino, K. Nakada, N. Aoki, M. Shimizu, & Y. Ochiai. (2003). Low-temperature transport of C60 thin-film FET. Physica B, 329-333, 1538-1539.
[18]M. Kitamura, Y. Kuzumoto, M. Kamura, S. Aomori, & Y. Arakawa. (2007). High-performance fullerene C60 thin-film transistors operating at low voltages. Applied Physics Letters, 91, 183514.
[19]A. Facchetti, M. Musrush, H. E. Katz, & T. J. Marks. (2003). n-Type Building Blocks for Organic Electronics: A Homologous Family of Fluorocarbon-Substituted Thiophene Oligomers with High Carrier Mobility. Advanced Materials, 15(1), 33-38.
[20]B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, & S. Bauer. (2005). High-mobility pentacene organic field-effect transistors with a high-dielectric-constant fluorinated polymer film gate dielectric. Applied Physics Letters, 86, 242902.
[21]R. Sarma, D. Saikia, P. Saikia, P. K. Saikia, & B. Baishya. (2010). Pentacene based Thin Film Transistors with High-k Dielectric Nd2O3 as a Gate Insulator. Brazilian Journal of Physics, 40(3), 357-360.
[22]M. Kitamura, Y. Arakawa. (2008). Pentacene-based organic field-effect transistors. Journal of Physics: Condensed Matter, 20, 184011.
[23]R. Hofmockel, U. Zschieschang, U. Kraft, R. Rödel, N. H. Hansen, M. Stolte, F. Würthner, K. Takimiya, K. Kern, J. Pflaum, & H. Klauk. (2013). High-mobility organic thin-film transistors basedon a small-molecule semiconductor deposited in vacuum and by solution shearing. Organic Electronics, 14, 3213-3221.
[24]D. M. Taylor, E. R. Patchett, A. Williams, Z. Ding, H. E. Assender, J. J. Morrison, & S. G. Yeates. (2015). Fabrication and simulation of organic transistors and functional circuits. Chemical Physics, 456, 85-92.
[25]A. J. Ben-Sasson, Z. Chen, A. Facchetti, & N. Tessler. (2012). Solution-processed ambipolar vertical organic field effect transistor. Applied Physics Letters, 100, 263306.
[26]O. Acton, M. Dubey, T. Weidner, K. M. O’Malley, T.-W. Kim, G. G. Ting, D. Hutchins, J. E. Baio, T. C. Lovejoy, A. H. Gage, D. G. Castner, H. Ma, & A. K.-Y. Jen. (2011). Simultaneous Modification of Bottom-Contact Electrode and Dielectric Surfaces for Organic Thin-Film Transistors Through Single-Component Spin-Cast Monolayers. Advanced Functional Materials, 21, 1476-1488.
[27]S.-Y. Yang, K. Shin, & C.-E. Park. (2005). The Effect of Gate-Dielectric Surface Energy on Pentacene Morphology and Organic Field-Effect Transistor Characteristics. Advanced Functional Materials, 15, 1806-1814.
[28]L.-L. Chua, J. Zaumseil1, J.-F. Chang, Eric C.-W. Ou, Peter K.-H. Ho, H. Sirringhaus, & R. H. Friend. (2005). General observation of n-type field-effect behaviour in organic semiconductors. Nature, 434, 194-199.
[29]A. J. Ben-Sasson, E. Avnon, E. Ploshnik, O. Globerman, R. Shenhar, G. L. Frey, & N. Tessler. (2009). Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates. Applied Physics Letters, 95, 213301.
[30]C.-M. Keum, I.-H. Lee, S.-H. Lee, G.-J. Lee, M.-H. Kim, & S.-D. Lee. (2014). Quasi-surface emission in vertical organic light-emitting transistors with network electrode. Optics Express, 22(12), 14750-14756.
[31]A. J. Ben-Sasson, D. Azulai, H. Gilon, A. Facchetti, G. Markovich, & N. Tessler. (2015). Self-Assembled Metallic Nanowire-Based Vertical Organic Field-Effect Transistor. ACS Applied Materials & Interfaces, 7, 2149-2152.
[32]M. G. Lemaitre, E. P. Donoghue, M. A. McCarthy, B. Liu, S. Tongay, B. Gila, P. Kumar, R. K. Singh, B. R. Appleton, & A. G. Rinzler. (2012). Improved Transfer of Graphene for Gated Schottky-Junction, Vertical, Organic, Field-Effect Transistors. ACS Nano, 6(10), 9095-9102.
[33]W.-C. Chen, A. Rinzler, & J. Guo. (2013). Computational study of graphene-based vertical field effect transistor. Journal of Applied Physics, 113, 094057.
[34]H. Yu, Z. Dong, J. Guo, D.-Y. Kim, & F. So. (2016). Vertical Organic Field-Effect Transistors for Integrated Optoelectronic Applications. ACS Applied Materials & Interfaces, 8, 10430-10435.
[35]M. Pope, H. P. Kallmann, & P. Magnante. (1963). Electroluminescence in Organic Crystals. The Journal of Chemical Physics, 38, 2042.
[36]C. W. Tang, S. A. VanSlyke. (1987). Organic electroluminescent diodes. Applied Physics Letters, 51, 913.
[37]J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns & A. B. Holmes. (1990). Light-emitting diodes based on conjugated polymers. Nature, 347, 539-541.
[38]C. C. Freudenrich, (2005, March 24). How OLEDs Work. HowStuffWorks. Retrieved November 27, 2018, from https://electronics.howstuffworks.com/oled.htm
[39]M. Greenman, A. J. Ben-Sasson, Z. Chen, A. Facchetti, & N. Tessler. (2013). Fast switching characteristics in vertical organic field effect transistors. Applied Physics Letters, 103, 073502.
[40]A. J. Ben-Sasson, N. Tessler. (2012). Unraveling the Physics of Vertical Organic Field Effect Transistors through Nanoscale Engineering of a Self-Assembled Transparent Electrode. Nano Letters, 12, 4729-4733.
[41]S.-M. Yang, S.-G. Jang, D.-G. Choi, S. Kim, & H.-K. Yu. (2006). Nanomachining by Colloidal Lithography. Small, 2(4), 458-475.
[42]X.-Z. Ye, L.-M. Qi. (2011). Two-dimensionally patterned nanostructures based on monolayer colloidal crystals: Controllable fabrication, assembly, and applications. Nano Today, 4, 608-631.
[43]Y.-N. Xia, B. Gates, Y.-D. Yin, & Y. Lu. (2000). Monodispersed Colloidal Spheres: Old Materials with New Applications. Advanced Materials, 12(10),639-713.
[44]M. Semmler, J. Rička, M. Borkovec. (2000). Diffusional deposition of colloidal particles: electrostatic interaction and size polydispersity effects. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 165, 79-93.
[45]C. A. Johnson, A. M. Lenhoff. (1996). Adsorption of Charged Latex Particles on Mica Studied by Atomic Force Microscopy. Journal of Colloid and Interface Science, 179, 587-599.
[46]P. A. Kralchevskyt, K. Nagayama. (1993). Capillary Forces between Colloidal Particles. Langmuir, 10(1), 23-36.
[47]P. Hanarp, D. S. Sutherland, J. Gold, & B. Kasemo. (2002). Control of nanoparticle film structure for colloidal lithography. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 214, 23-36.
[48]Q.-F. Yan, L. Gao, V. Sharma, Y.-M. Chiang, & C. C. Wong. (2008). Particle and Substrate Charge Effects on Colloidal Self-Assembly in a Sessile Drop. Langmuir, 24, 11518-11522.
[49]M. J. Rosen. (2004). Surfactants and Interfacial Phenomena. New York: John Wiley & Sons.
[50]A. J. Ben-Sasson, N. Tessler. (2011). Patterned electrode vertical field effect transistor: Theory and experiment. Journal of Applied Physics, 110, 044501.
[51]Y. Preezant, N. Tessler. (2003). Self-consistent analysis of the contact phenomena in low-mobility semiconductors. Journal of Applied Physics, 93, 2059.
[52]A. J. Ben-Sasson, M. Greenman, Y. Roichman, & N. Tessler. (2014). The Mechanism of Operation of Lateral and Vertical Organic Field Effect Transistors. Israel Journal of Chemistry, 54, 568-585.
[53]J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, & A. Stocking. (1996). Science, 273(5277), 884-888.
[54]J. G. Simmons. (1965). Richardsin-Schottky Effect in Solids. Physics Review Letters, 15, 967-968.
[55]R. H. Fowler, L. Nordheim. (1928). Electron Emission in Intense Electric Fields. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 119(781), 173-181.
[56]U. Wolf, V. I. Arkhipov, & H. Bässler. (1998). Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Physical Review B, 59(11), 7507-7513.
[57]I. D. Parker. (1994). Carrier tunneling and device characteristics in polymer light-emitting diodes. Journal of Applied Physics, 75(3), 1656-1666.
[58]C. E. Small, S.-W. Tsang, J. Kido, S. K. So, & F. So. (2012). Origin of Enhanced Hole Injection in Inverted Organic Devices with Electron Accepting Interlayer. Advanced Functional Materials, 22, 3261-3266.
[59]B. Wardle. (2009). Principles and Applications of Photochemistry. Manchester, England: John Wiley & Sons.
[60]Dexter Energy Transfer. (2017, May 31). In Chemistry LibreTexts. Retrieved December 6, 2018, from https://chem.libretexts.org/Textbook_Maps/Physical_and_Theoretical_Chemistry_Textbook_Maps/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Fundamentals/Dexter_Energy_Transfer
[61]J. Daintith. (2008). A Dictionary of Chemistry. Oxford, England: Oxford University Press.
[62]R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, & R. M. Fleming. (1995). C60 thin film transistors. Applied Physics Letters, 67, 121-123.
[63]O. Acton, G. Ting, H. Ma, & A. K.-Y. Jen. (2008). Low-voltage high-performance thin film transistors via low-surface-energy phosphonic acid monolayer/hafnium oxide hybrid dielectric. Applied Physics Letters, 93, 083302.
[64]E. Itoh, Y. Higashimoto, & K. Miyairi. (2008). Electrical Properties of Heat-Treated C60 Field Effect Transistor Prepared on Polyimide Gate Insulator. Japanese Journal of Applied Physics, 47(1), 480-483.
[65]Th. B. Singh, N. S. Sariciftci, H. Yang, L. Yang, B. Plochberger, & H. Sitter. (2007). Correlation of crystalline and structural properties of thin films grown at various temperature with charge carrier mobility. Applied Physics Letters, 90, 213512.
[66]M. D. Groner, F. H. Fabreguette, J. W. Elam, & S. M. George. (2003). Low-Temperature Al2O3 Atomic Layer Deposition. Chemistry of Materials, 16, 639-645.
[67]G. Dingemans, W. M. M. Kessels. (2012). Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells. Journal of Vacuum Science & Technology A, 30, 040802.
[68]H. Ron, S. Matlis, & I. Rubinstein. (1997). lf-Assembled Monolayers on Oxidized Metals. 2. Gold Surface Oxidative Pretreatment, Monolayer Properties, and Depression Formation. Langmuir, 14, 1116-1121.
[69]L.-P. Lu, D. Kabra, & R. H. Friend. (2012). Barium Hydroxide as an Interlayer Between Zinc Oxide and a Luminescent Conjugated Polymer for Light-Emitting Diodes. Advanced Functional Materials, 22, 4165-4171.
[70]G. Socrates. (2001). Infrared and Raman Characteristic Group Frequencies. London, England: John Wiley & Sons.
[71]M. Lawston. (2015). The Effect of Ultraviolet and Ultraviolet - Ozone Exposure on Polymers. Niskayuna High School, 1-13.
[72]M.-L. Sham, J.-K. Kim. (2005). Surface functionalities of multi-wall carbon nanotubes after UV/Ozone and TETA treatments. Carbon, 44, 768-777.
[73]J. A. Ashenhurst, (2012, June 5). Nucleophiles and Electrophiles. Master Organic Chemistry. Retrieved December 21, 2018, from https://www.masterorganicchemistry.com/2012/06/05/nucleophiles-and-electrophiles/
[74]K. D. Dobson, A. D. Roddick-Lanzilotta, A. J. McQuillan. (2000). An in situ infrared spectroscopic investigation of adsorption of sodium dodecylsulfate and of cetyltrimethylammonium bromide surfactants to TiO2, ZrO2, Al2O3, and Ta2O5 particle films from aqueous solutions. Vibrational Spectroscopy, 24, 287-295.
[75]R. P. Sperline, Y. Song, & H. Freiser. (1992). Fourier Transform Infrared Attenuated Total Reflection Spectroscopy Linear Dichroism Study of Sodium Dodecyl Sulfate Adsorption at the Al2O3/Water Interface Using Al2O3-Coated Optics. Langmuir, 8, 2183-2191.
[76]Z.-Y. Hu, J. B. Hannon, H.-S. Park, S.-J. Han, G. S. Tulevski, A. Afzali, & M. Liehr. (2017). Photo-Chemically Directed Self-Assembly of Carbon Nanotubes on Surfaces. ArXiv Chemical Physics (physics.chem-ph), 1-12. |