博碩士論文 100233002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.135.195.180
姓名 林胤宇(In-Yu Lin)  查詢紙本館藏   畢業系所 系統生物與生物資訊研究所
論文名稱 研究牛樟芝萃取物 CCM111 的作用機制
(Study of the mechanism of actions of CCM111, extract of Antrodia cinnamomea)
相關論文
★ 探討牛樟芝CCM111對細胞訊息傳遞之影響★ Tyloxapol 在大腸癌細胞中的特異性及作用機制之研究
★ MAPK傳導路徑相關微型RNA在黑色素瘤細胞中功能之研究★ 利用MAPK訊息傳導路徑相關的miRNAs來治療BRAF抑制劑的抗藥性在黑色素瘤細胞中之研究
★ 探討miR-567在黑色素細胞瘤中的調控機制★ 探索微型核糖核酸與慢性腎臟病及血液透析病人泌尿道上皮癌生物標記的相關性
★ 以miRNA為基礎開發偵測放射線治療抗性及預後的生物標記★ 偵測微型核糖核酸 miR-524-5p表現量利用原位雜交染色法來作為輔助診斷惡性黑色素瘤的生物標記之研究
★ 探討黑色素腫瘤中p53調控miR-524-5p及miR-596表現之機制★ 泌尿道上皮癌相關的miRNAs在膀胱癌之研究
★ 探討BRAF抑制劑透過細胞間訊息誘導腫瘤形成之研究★ 微型核糖核酸成為放射線治療的預後生物標記之研究
★ 發展以血中微型 RNA 作為冠心症(CAD)的非侵入性疾病指標★ microRNAs作為放射治療預後之生物標誌物與miR-148a-3p於頭頸癌放射敏感度之研究
★ 研究miR-524-5p和miR-567治療在黑色素瘤與BRAF抑製劑的抗藥性黑色素瘤★ 包覆性腹膜硬化症相關miRNAs在腹膜纖維化之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 牛樟芝(Antrodia cinnamomea, AC)是台灣真菌類多孔菌目的特有種,傳統上被台灣原住民當作解酒與治療肝病的草藥,CCM111則是牛樟芝的水粗萃取物。先前研究指出牛樟芝含有許多生物活性,包括抗發炎,抗癌,抗乙型肝炎病毒,護肝和抗肝纖維化。因此,牛樟芝被認為是一種高價值的中藥。然而到目前為止,牛樟芝與其生物功能之間的機制仍不明確。
在研究中為了探索CCM111在免疫反應中的機制,我們建立了9株與免疫反應路徑相關的冷光訊息傳遞細胞並且偵測CCM111是否會影響訊息傳導路徑。實驗結果顯示CCM111可以顯著抑制Toll-like receptor 4 (TLR4), Nuclear factor kappa B (NF-κB)以及Signal transducer and activator of transcription 3 (STAT3)等訊息傳導路徑活性。在進一步的研究中,我們發現CCM111抑制發炎反應的機制是透過抑制STAT3與NF-κB訊息路徑活性,來抑制產生發炎因子的inducible nitric oxide synthase (iNOS)以及Cyclooxygenase-2 (COX-2)的蛋白質表現。因此我們的研究結果顯示CCM111具有作為抗發炎的潛力。
由於慢性的肝臟發炎會導致肝纖維化(Liver fibrosis)與肝硬化(Cirrhosis),並且我們發現CCM111具有抗發炎的作用,因此我們研究CCM111是否具有抗肝纖維化的功能以及作用機制。我們發現CCM111能夠藉由抑制基質金屬蛋白酶-2 (metalloproteinase-2, MMP2)、α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA)的蛋白質表現與抑制Transforming Growth Factor β (TGF-β)來減輕誘導化學性肝纖維化四氯化碳(Tetrachloromethane, CCl4)造成的肝損傷。並且我們藉由次世代定序(Next-generation sequence)發現CCM111會去抑制TGF-β,STAT3和Wnt訊息傳導路徑下游的基因表現。為了驗證實驗結果,我們在肝臟星狀細胞上發現CCM111能夠透過抑制TGF-β,STAT3和Wnt訊息傳導路徑活性來降低代表肝纖維化的標記(marker)。我們的研究指出CCM111具有預防以及治療肝纖維化藥物的潛力。
在本研究結果中,闡述了CCM111在抗發炎、抗肝纖維化作用機制。
摘要(英) CCM111 is an extract of Antrodia cinnamomea (AC), an endemic Polyporaceae fungus found in Taiwan. CCM111 has been used for the treatment of hangover and liver diseases. Previous studies showed that AC exerts various bioactivities, including anti-inflammation, anti-cancer, anti-hepatitis B virus, hepatoprotective, and anti-liver fibrosis effects. As a result, AC has been considered as a high-value traditional Chinese medicine. However, the biological functions of AC remain unclear.
In the present study, we examined the role of CCM111 in immune response by investigating signal transduction pathways. To monitor the activities of immune-related signaling pathways, we generated nine stable cell lines expressing transcriptional regulatory elements upstream of a luciferase reporter. We evaluated the effects of CCM111 on these signaling pathways and further investigated whether CCM111 can influence inflammatory function. Our results revealed that CCM111 treatment significantly inhibited the TLR4, NF-κB, and TLR4 signaling pathways. Further analyses showed that CCM111 significantly inhibited the inflammation response by downregulating the expression of the inflammatory proteins iNOS and COX-2 by inhibiting the STAT3 and NF-κB pathways. Therefore, our findings demonstrated the potential use of CCM111 as an anti-inflammatory agent.
Chronic liver inflammation plays an important role in the progression of liver fibrosis and cirrhosis. Our findings indicated that CCM111 exerts anti-inflammatory effects, thereby highlighting its potential applications for the treatment of liver fibrosis. During carbon tetrachloride (CCl4)-induced hepatic injury in vivo, CCM111 alleviated liver fibrosis by downregulating the expression of matrix metalloproteinase (MMP2) and α-smooth muscle actin (α-SMA) and inhibited the TGF-β pathway. Next-generation sequencing (NGS) analysis showed that CCM111 markedly downregulated the expression of genes involved in the TGF-β, Wnt, and STAT3 signaling pathways. CCM111 inhibited the expression of fibrosis markers by inhibiting the expression of TGF-β-, Wnt-, and STAT3-dependent proinflammatory and profibrotic mediators in HSC-T6, corroborating the results of the NGS analysis. These results highlight the potential use of CCM111 in the prevention and treatment of chronic fibrotic liver diseases.
Our current findings provided the basis for further elucidating the mechanisms underlying the anti-inflammatory and anti-liver fibrosis effects of CCM111.
關鍵字(中) ★ 牛樟芝
★ 免疫
★ 抗發炎
★ 抗肝纖維化
★ CCM111
關鍵字(英) ★ Antrodia Cinnamomea
★ Immune
★ Anti-inflammation
★ Anti-liver fibrosis
★ CCM111
論文目次 Table of contents
中文摘要I
Abstract .III
Acknowledgement .. V
List of figures .. XI
List of tables . XIV
List of abbreviations . XV
Chapter 1: Literature review 1
1.1. Introduction to Inflammation 1
1.1.1. Definition of inflammation .. 1
1.1.2. Inflammation, diseases and signal transduction pathways .. 1
1.2. Introduction to liver fibrosis .. 4
1.2.1. Liver and Liver fibrosis . 4
1.2.2. Hepatic stellate cells (HSCs) .. 4
1.2.3. The critical pathways involved in liver fibrosis 5
1.2.4. Liver fibrosis therapy . 7
1.3. Introduction to Antrodia cinnamomea . 8
1.3.1. Biological function of Antrodia cinnamomea 8
1.3.2. The preparation of CCM111 .. 9
1.3.3. Anti-inflammatory effects of Antrodia cinnamomea . 9
1.3.4. Anti-liver fibrosis effects of Antrodia cinnamomea . 10
1.4. Significances and purpose . 10
Chapter 2: Material and Method. 23
2.1. Cell lines and reagents . 23
2.2. Chemicals and reagents .. 23
2.3. Establishment of stable clones expressing the transcriptional response element
(TRE) luciferase reporter. 24
2.4. Preparation of the crude water extract. .. 25
2.5. Cell lines and establishment of stable cell lines. .. 25
2.6. Western blotting assay 26
2.7. Nitrite assay 27
2.8. Subcellular fractionation .. 27
2.9. HPLC-UV analysis 28
2.10. Antibody array . 28
2.11. Biochemical analysis of liver function 29
2.12. Cells and Toxicity assay . 29
2.13. Hematoxylin-eosin staining and Sirius Red/Fast Green staining . 30
2.14. Next-generation sequence . 30
2.15. Animals and treatments . 31
2.16. Statistical Analysis . 31
Chapter 3: CCM111 regulates immune-related activity through STAT3 and NF-κB
pathways ..33
3.1. Introduction .. 33
3.2. Results 34
3.2.1. The quality control of CCM111 by HPLC-UV and LC/MS 34
3.2.2. Effects of CCM111 on signal transduction pathways in Hela and HEK293 cells 35
3.2.3. CCM111 reduces the activity of STAT3 and NF-κB pathways in HEK293 cells 36
3.2.4. CCM111 reduces the activity of TLR4 pathway in HEK293 and RAW264.7 cells
36
3.2.5. CCM111 reduces the LPS-mediated activation of STAT3 and NF-κB signaling in
RAW264.7 . 37
3.2.6. CCM111 inhibits the expression of inflammatory cytokines in macrophages 39
3.2.7. Effects of CCM111 fractions on the NO production and the phosphorylation of
Tyk2 protein expression in RAW264.7 cells 40
3.3. Discussion 40
Chapter 4: CCM111 prevents hepatic fibrosis via cooperative inhibition of TGF-β, Wnt and
STAT3 signaling pathways .. 61
4.1. Introduction .. 61
4.3. Results 63
4.3.1. Effects of CCM111 on CCl 4 -treated mice . 63
4.3.2. The effects of CCl 4 -treated liver injury were evaluated by
histopathological examination of the liver sections. . 64
4.3.3. CCM111 represses the progression of liver fibrosis through reducing activation of
the TGF-β pathway 64
4.3.4. CCM111 inhibits the expression of inflammation- and fibrogenesis-related genes 65
4.3.5. Effects of CCM111 on TGF-β1-induced MMP2, α-SMA and TGF-β pathway
activation in HSC-T6 66
4.3.6. Effects of CCM111 on TGF-β1-induced STAT3 and Wnt pathways activation in
HSC-T6 66
4.4. Discussion 67
Chapter 5: Concluding remarks and future direction 85
5.1. Conclusion remarks .. 85
5.2. Future direction .. 87
References ..89
Appendix A CCM111 inhibits the proliferation of melanoma cell line. 101
Appendix B Transcriptional regulatory elements (TRE) are the transcription factor binding
sequence. 102
Appendix C. Qualitative analysis of Fraction 4. .. 103
Appendix D. List of plasmids described in this thesis. . 104
Appendix E. Publication list. 114
參考文獻 References
1. Ashley NT, Weil ZM, Nelson RJ. Inflammation: Mechanisms, Costs, and Natural Variation. Annual Review of Ecology, Evolution, and Systematics. 2012;43(1):385-406.
2. Aggarwal BB, Van Kuiken ME, Iyer LH, Harikumar KB, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009;234(8):825-849.
3. Eaves-Pyles T, Allen CA, Taormina J, Swidsinski A, Tutt CB, Jezek GE, Islas-Islas M, Torres AG. Escherichia coli isolated from a Crohn′s disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol. 2008;298(5-6):397-409.
4. Akira S, Takeda K. Toll-like receptor signalling. Nature reviews. Immunology. 2004;4(7):499-511.
5. Medzhitov R. Toll-like receptors and innate immunity. Nature reviews. Immunology. 2001;1(2):135-145.
6. Hsiao-Yun Lin, Chih-hsin Tang, Jia-Hong Chen. Peptidoglycan Induces Interleukin-6 Expression Through the TLR2 Receptor, JNK, c-Jun, and AP-1 Pathways in Microglia. J. Cell. Physiol. . 2010;226:1573-1582.
7. Liang S, Ristich, V. Modulation of dendritic cell differentiation by HLA-G and ILT4 requires the IL-6-STAT3 signaling pathway. Proceedings of the National Academy of Sciences. 2008;105(24):8357-8362.
8. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T, Takeda K, Akira S. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity. 1999;11(4):443-451.
9. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature. 2001;413(6857):732-738.
10. Liu BS, Stoop JN, Huizinga TW, Toes RE. IL-21 enhances the activity of the TLR-MyD88-STAT3 pathway but not the classical TLR-MyD88-NF-kappaB pathway in human B cells to boost antibody production. Journal of immunology (Baltimore, Md. : 1950). 2013;191(8):4086-4094.
11. Liu BS, Cao Y, Huizinga TW, Hafler DA, Toes RE. TLR-mediated STAT3 and ERK activation controls IL-10 secretion by human B cells. European journal of immunology. 2014;44(7):2121-2129.
12. Klein U, Ghosh S. The Two Faces of NF-kappaB Signaling in Cancer Development and Therapy. Cancer cell. 2011;20(5):556-558.
13. Oeckinghaus A, Ghosh S. The NF-kappaB family of transcription factors and its regulation. Cold Spring Harbor perspectives in biology. 2009;1(4):a000034.
14. Morigi M, Zoja C, Colleoni S, Angioletti S, Imberti B, Donadelli R, Remuzzi A, Remuzzi G. Xenogeneic serum promotes leukocyte-endothelium interaction under flow through two temporally distinct pathways: role of complement and nuclear factor-kappaB. Journal of the American Society of Nephrology : JASN. 1999;10(10):2197-2207.
15. Karin M, Ben-Neriah Y. Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annual review of immunology. 2000;18:621-663.
16. Stark GR, Darnell JE, Jr. The JAK-STAT pathway at twenty. Immunity. 2012;36(4):503-514.
17. Ihle JN. The Stat family in cytokine signaling. Current Opinion in Cell Biology. 2011;13(2):6.
18. Matsumoto M, Tanaka N, Harada H, Kimura T, Yokochi T, Kitagawa M, Schindler C, Taniguchi T. Activation of the transcription factor ISGF3 by interferon-gamma. Biological chemistry. 1999;380(6):699-703.
19. Marrero MB, Venema VJ, He H, Caldwell RB, Venema RC. Inhibition by the JAK/STAT pathway of IFNgamma- and LPS-stimulated nitric oxide synthase induction in vascular smooth muscle cells. Biochemical and biophysical research communications. 1998;252(2):508-512.
20. Lo HW, Cao X, Zhu H, Ali-Osman F. Cyclooxygenase-2 Is a Novel Transcriptional Target of the Nuclear EGFR-STAT3 and EGFRvIII-STAT3 Signaling Axes. Molecular Cancer Research. 2010;8(2):232-245.
21. Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: a leading role for STAT3. Nature reviews. Cancer. 2009;9(11):798-809.
22. Ministry of Health and Welfare. 2017 Analysis of the cause of death. 2017. https://dep.mohw.gov.tw/DOS/np-1776-113.html
23. Bataller R, Brenner DA. Liver fibrosis. The Journal of clinical investigation. 2005;115(2):209-218.
24. Pellicoro A, Ramachandran P, Iredale JP, Fallowfield JA. Liver fibrosis and repair: immune regulation of wound healing in a solid organ. Nature reviews. Immunology. 2014;14(3):181-194.
25. Frevert U, Engelmann S, Zougbede S, Stange J, Ng B, Matuschewski K, Liebes L, Yee H. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 2005;3(6):e192.
26. Blaner WS, O′Byrne SM, Wongsiriroj N, Kluwe J, D′Ambrosio DM, Jiang H, Schwabe RF, Hillman EM, Piantedosi R, Libien J. Hepatic stellate cell lipid droplets: a specialized lipid droplet for retinoid storage. Biochimica et biophysica acta. 2009;1791(6):467-473.
27. Moreira RK. Hepatic stellate cells and liver fibrosis. Arch Pathol Lab Med. 2007;131(11):1728-1734.
28. Lee JS, Semela D, Iredale J, Shah VH. Sinusoidal remodeling and angiogenesis: a new function for the liver-specific pericyte? Hepatology (Baltimore, Md.). 2007;45(3):817-825.
29. Yin C, Evason KJ, Asahina K, Stainier DY. Hepatic stellate cells in liver development, regeneration, and cancer. The Journal of clinical investigation. 2013;123(5):1902-1910.
30. Heldin CH, Moustakas A. Signaling Receptors for TGF-beta Family Members. Cold Spring Harbor perspectives in biology. 2016;8(8).
31. Fabregat I, Moreno-Caceres J, Sanchez A, Dooley S, Dewidar B, Giannelli G, Ten Dijke P. TGF-beta signalling and liver disease. FEBS J. 2016;283(12):2219-2232.
32. Karkampouna S, Ten Dijke P, Dooley S, Julio MK. TGFbeta signaling in liver regeneration. Curr Pharm Des. 2012;18(27):4103-4113.
33. Tsuchida T, Friedman SL. Mechanisms of hepatic stellate cell activation. Nature reviews. Gastroenterology & hepatology. 2017;14(7):397-411.
34. Meng XM, Nikolic-Paterson DJ, Lan HY. TGF-beta: the master regulator of fibrosis. Nature reviews. Nephrology. 2016;12(6):325-338.
35. He G, Karin M. NF-kappaB and STAT3 - key players in liver inflammation and cancer. Cell research. 2011;21(1):159-168.
36. Hafez MM, Al-Harbi NO, Al-Hoshani AR, Al-Hosaini KA, Al Shrari SD, Al Rejaie SS, Sayed-Ahmed MM, Al-Shabanah OA. Hepato-protective effect of rutin via IL-6/STAT3 pathway in CCl4-induced hepatotoxicity in rats. Biological research. 2015;48:30.
37. Komiya Y, Habas R. Wnt signal transduction pathways. Organogenesis. 2008;4(2):68-75.
38. Kikuchi A, Yamamoto H, Kishida S. Multiplicity of the interactions of Wnt proteins and their receptors. Cellular signalling. 2007;19(4):659-671.
39. Behari J. The Wnt/beta-catenin signaling pathway in liver biology and disease. Expert review of gastroenterology & hepatology. 2010;4(6):745-756.
40. Nejak-Bowen K, Monga SP. Wnt/beta-catenin signaling in hepatic organogenesis. Organogenesis. 2008;4(2):92-99.
41. Akhmetshina A, Palumbo K, Dees C, Bergmann C, Venalis P, Zerr P, Horn A, Kireva T, Beyer C, Zwerina J, Schneider H, Sadowski A, Riener MO, MacDougald OA, Distler O, Schett G, Distler JH. Activation of canonical Wnt signalling is required for TGF-beta-mediated fibrosis. Nature communications. 2012;3:735.
42. Li W, Zhu C, Li Y, Wu Q, Gao R. Mest attenuates CCl4-induced liver fibrosis in rats by inhibiting the Wnt/beta-catenin signaling pathway. Gut and liver. 2014;8(3):282-291.
43. Miao CG, Yang YY, He X, Huang C, Huang Y, Zhang L, Lv XW, Jin Y, Li J. Wnt signaling in liver fibrosis: progress, challenges and potential directions. Biochimie. 2013;95(12):2326-2335.
44. Ge WS, Wang YJ, Wu JX, Fan JG, Chen YW, Zhu L. beta-catenin is overexpressed in hepatic fibrosis and blockage of Wnt/beta-catenin signaling inhibits hepatic stellate cell activation. Molecular medicine reports. 2014;9(6):2145-2151.
45. Pockros PJ, Schiff ER, Shiffman ML, McHutchison JG, Gish RG, Afdhal NH, Makhviladze M, Huyghe M, Hecht D, Oltersdorf T, Shapiro DA. Oral IDN-6556, an antiapoptotic caspase inhibitor, may lower aminotransferase activity in patients with chronic hepatitis C. Hepatology (Baltimore, Md.). 2007;46(2):324-329.
46. Sanyal AJ, Chalasani N, Kowdley KV, McCullough A, Diehl AM, Bass NM, Neuschwander-Tetri BA, Lavine JE, Tonascia J, Unalp A, Van Natta M, Clark J, Brunt EM, Kleiner DE, Hoofnagle JH, Robuck PR. Pioglitazone, vitamin E, or placebo for nonalcoholic steatohepatitis. The New England Journal of medicine. 2010;362(18):1675-1685.
47. Granzow M, Schierwagen R, Klein S, Kowallick B, Huss S, Linhart M, Mazar IG, Gortzen J, Vogt A, Schildberg FA, Gonzalez-Carmona MA, Wojtalla A, Kramer B, Nattermann J, Siegmund SV, Werner N, Furst DO, Laleman W, Knolle P, Shah VH, Sauerbruch T, Trebicka J. Angiotensin-II type 1 receptor-mediated Janus kinase 2 activation induces liver fibrosis. Hepatology (Baltimore, Md.). 2014;60(1):334-348.
48. Verbeke L, Farre R, Trebicka J, Komuta M, Roskams T, Klein S, Elst IV, Windmolders P, Vanuytsel T, Nevens F, Laleman W. Obeticholic acid, a farnesoid X receptor agonist, improves portal hypertension by two distinct pathways in cirrhotic rats. Hepatology (Baltimore, Md.). 2014;59(6):2286-2298.
49. Puthawala K, Hadjiangelis N, Jacoby SC, Bayongan E, Zhao Z, Yang Z, Devitt ML, Horan GS, Weinreb PH, Lukashev ME, Violette SM, Grant KS, Colarossi C, Formenti SC, Munger JS. Inhibition of integrin alpha(v)beta6, an activator of latent transforming growth factor-beta, prevents radiation-induced lung fibrosis. American journal of respiratory and critical care medicine. 2008;177(1):82-90.
50. Wang Q, Usinger W, Nichols B, Gray J, Xu L, Seeley TW, Brenner M, Guo G, Zhang W, Oliver N, Lin A, Yeowell D. Cooperative interaction of CTGF and TGF-beta in animal models of fibrotic disease. Fibrogenesis Tissue Repair. 2011;4(1):4.
51. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology (Baltimore, Md.). 2013;58(6):1941-1952.
52. Chakraborty JB, Mann DA. NF-kappaB signalling: embracing complexity to achieve translation. Journal of hepatology. 2010;52(2):285-291.
53. Parsons CJ, Bradford BU, Pan CQ, Cheung E, Schauer M, Knorr A, Krebs B, Kraft S, Zahn S, Brocks B, Feirt N, Mei B, Cho MS, Ramamoorthi R, Roldan G, Ng P, Lum P, Hirth-Dietrich C, Tomkinson A, Brenner DA. Antifibrotic effects of a tissue inhibitor of metalloproteinase-1 antibody on established liver fibrosis in rats. Hepatology (Baltimore, Md.). 2004;40(5):1106-1115.
54. Ao ZH, Xu ZH, Lu ZM, Xu HY, Zhang XM, Dou WF. Niuchangchih (Antrodia camphorata) and its potential in treating liver diseases. Journal of ethnopharmacology. 2009;121(2):194-212.
55. Chang CJ, Lu CC, Lin CS, Martel J, Ko YF, Ojcius DM, Wu TR, Tsai YH, Yeh TS, Lu JJ, Lai HC, Young JD. Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice. Int J Obes (Lond). 2018;42(2):231-243.
56. Zheng J, Jiao S, Li Q, Jia P, Yin H, Zhao X, Du Y, Liu H. Antrodia cinnamomea Oligosaccharides Suppress Lipopolysaccharide-Induced Inflammation through Promoting O-GlcNAcylation and Repressing p38/Akt Phosphorylation. Molecules. 2017;23(1).
58. Geethangili M, Tzeng YM. Review of Pharmacological Effects of Antrodia camphorata and Its Bioactive Compounds. Evidence-based complementary and alternative medicine : eCAM. 2011;2011:212641.
59. Lu MC, El-Shazly M, Wu TY, Du YC, Chang TT, Chen CF, Hsu YM, Lai KH, Chiu CP, Chang FR, Wu YC. Recent research and development of Antrodia cinnamomea. Pharmacol Ther. 2013;139(2):124-156.
60. Hseu YC, Wu FY, Wu JJ, Chen JY, Chang WH, Lu FJ, Lai YC, Yang HL. Anti-inflammatory potential of Antrodia Camphorata through inhibition of iNOS, COX-2 and cytokines via the NF-kappaB pathway. International Immunopharmacology. 2005;5(13-14):1914-1925.
61. Wen CL, Chang CC, Huang SS, Kuo CL, Hsu SL, Deng JS, Huang GJ. Anti-inflammatory effects of methanol extract of Antrodia cinnamomea mycelia both in vitro and in vivo. Journal of Ethnopharmacology. 2011;137(1):575-584.
62. Hseu YC, Huang HC, Hsiang CY. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2010;48(8-9):2319-2325.
63. Rao YK, Fang SH, Tzeng YM. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. Journal of ethnopharmacology. 2007;114(1):78-85.
64. Lin WC, Kuo SC, Lin WL, Fang HL, Wang BC. Filtrate of fermented mycelia from Antrodia camphorata reduces liver fibrosis induced by carbon tetrachloride in rats. World journal of gastroenterology. 2006;12(15):2369-2374.
65. Song TY, Yen GC. Protective effects of fermented filtrate from Antrodia camphorata in submerged culture against CCl4-induced hepatic toxicity in rats. Journal of agricultural and food chemistry. 2003;51(6):1571-1577.
66. Wu MT, Tzang BS, Chang YY, Chiu CH, Kang WY, Huang CH, Chen YC. Effects of Antrodia camphorata on alcohol clearance and antifibrosis in livers of rats continuously fed alcohol. Journal of agricultural and food chemistry. 2011;59(8):4248-4254.
67. Chen YR, Chang KT, Tsai MJ, Lee CH, Huang KJ, Cheng H, Ho YP, Chen JC, Yang HH, Weng CF. Antrodia cinnamomea profoundly exalted the reversion of activated hepatic stellate cells by the alteration of cellular proteins. Food and chemical toxicology. 2014;69:150-162.
68. Chiu HW, Hua KF. Hepatoprotective Effect of Wheat-Based Solid-State Fermented Antrodia cinnamomea in Carbon Tetrachloride-Induced Liver Injury in Rat. PloS one. 2016;11(4):e0153087.
69. Editorial. Mechanism matters. Nat Med. 2010;16(4):347.
70. Vinay Kumar AA, Jon Aster. Robbins Basic Pathology. 8 ed. A Divisionof Reed Elsevier India Pvt: Elsevier; 2008.
71. O′Neill LA, Golenbock D, Bowie AG. The history of Toll-like receptors - redefining innate immunity. Nature reviews. Immunology. 2013;13(6):453-460.
72. Lyman GH, Michels SL, Reynolds MW, Barron R, Tomic KS, Yu J. Risk of mortality in patients with cancer who experience febrile neutropenia. Cancer. 2010;116(23):5555-5563.
73. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420(6917):860-867.
74. Fujiwara N, Kobayashi K. Macrophages in inflammation. Current drug targets. Inflammation and allergy. 2005;4(3):281-286.
75. Meng F, Lowell CA. Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn. The Journal of experimental medicine. 1997;185(9):1661-1670.
76. Vincent JL, Zhang H, Szabo C, Preiser JC. Effects of nitric oxide in septic shock. American journal of respiratory and critical care medicine. 2000;161(6):1781-1785.
77. Ricciotti E, FitzGerald GA. Prostaglandins and inflammation. Arteriosclerosis, thrombosis, and vascular biology. 2011;31(5):986-1000.
78. Sheng-Hua Wu LR, Tun-Tschu Chang. Antrodia camphorata ("niu-chang-chih"), new combination of a medicinal fungus in Taiwan. Bot. Bull. Acad. Sin. 1997;38:273-275.
79. Levy JA. The unexpected pleiotropic activities of RANTES. Journal of immunology (Baltimore, Md. : 1950). 2009;182(7):3945-3946.
80. Murray J, Barbara JA, Dunkley SA, Lopez AF, Van Ostade X, Condliffe AM, Dransfield I, Haslett C, Chilvers ER. Regulation of neutrophil apoptosis by tumor necrosis factor-alpha: requirement for TNFR55 and TNFR75 for induction of apoptosis in vitro. Blood. 1997;90(7):2772-2783.
81. Christensen PJ, Rolfe MW, Standiford TJ, Burdick MD, Toews GB, Strieter RM. Characterization of the production of monocyte chemoattractant protein-1 and IL-8 in an allogeneic immune response. Journal of immunology (Baltimore, Md. : 1950). 1993;151(3):1205-1213.
82. Roediger B, Kyle R, Tay SS, Mitchell AJ, Bolton HA, Guy TV, Tan SY, Forbes-Blom E, Tong PL, Koller Y, Shklovskaya E, Iwashima M, McCoy KD, Le Gros G, Fazekas de St Groth B, Weninger W. IL-2 is a critical regulator of group 2 innate lymphoid cell function during pulmonary inflammation. The Journal of allergy and clinical immunology. 2015;136(6):1653-1663 e1651-1657.
83. Weber GF, Chousterman BG, He S, Fenn AM, Nairz M, Anzai A, Brenner T, Uhle F, Iwamoto Y, Robbins CS, Noiret L, Maier SL, Zonnchen T, Rahbari NN, Scholch S, Klotzsche-von Ameln A, Chavakis T, Weitz J, Hofer S, Weigand MA, Nahrendorf M, Weissleder R, Swirski FK. Interleukin-3 amplifies acute inflammation and is a potential therapeutic target in sepsis. Science (New York, N.Y.). 2015;347(6227):1260-1265.
84. Hitoshi Y, Yamaguchi N, Mita S, Sonoda E, Takaki S, Tominaga A, Takatsu K. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. Journal of immunology (Baltimore, Md. : 1950). 1990;144(11):4218-4225.
85. Jin W, Dong C. IL-17 cytokines in immunity and inflammation. Emerging microbes & infections. 2013;2(9):e60.
86. Miljkovic D, Trajkovic V. Inducible nitric oxide synthase activation by interleukin-17. Cytokine & growth factor reviews. 2004;15(1):21-32.
87. Beatty GL, Paterson Y. Regulation of tumor growth by IFN-gamma in cancer immunotherapy. Immunologic research. 2001;24(2):201-210.
88. Kohler A, De Filippo K, Hasenberg M, van den Brandt C, Nye E, Hosking MP, Lane TE, Mann L, Ransohoff RM, Hauser AE, Winter O, Schraven B, Geiger H, Hogg N, Gunzer M. G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood. 2011;117(16):4349-4357.
89. Lok S, Kaushansky K, Holly RD, Kuijper JL, Lofton-Day CE, Oort PJ, Grant FJ, Heipel MD, Burkhead SK, Kramer JM, et al. Cloning and expression of murine thrombopoietin cDNA and stimulation of platelet production in vivo. Nature. 1994;369(6481):565-568.
90. Carmeliet P, Ruiz de Almodovar C. VEGF ligands and receptors: implications in neurodevelopment and neurodegeneration. Cellular and molecular life sciences : CMLS. 2013;70(10):1763-1778.
91. Aggarwal BB, Shishodia S, Sandur SK, Pandey MK, Sethi G. Inflammation and cancer: how hot is the link? Biochemical pharmacology. 2006;72(11):1605-1621.
92. Huang JT, Welch JS, Ricote M, Binder CJ, Willson TM, Kelly C, Witztum JL, Funk CD, Conrad D, Glass CK. Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature. 1999;400(6742):378-382.
93. Tabas I. Macrophage death and defective inflammation resolution in atherosclerosis. Nature reviews. Immunology. 2010;10(1):36-46.
94. Hellerbrand C. Hepatic stellate cells--the pericytes in the liver. Pflugers Archiv : European journal of physiology. 2013;465(6):775-778.
95. Dong S, Chen QL, Song YN, Sun Y, Wei B, Li XY, Hu YY, Liu P, Su SB. Mechanisms of CCl4-induced liver fibrosis with combined transcriptomic and proteomic analysis. The Journal of toxicological sciences. 2016;41(4):561-572.
96. Liu C, Tao Q, Sun M, Wu JZ, Yang W, Jian P, Peng J, Hu Y, Liu C, Liu P. Kupffer cells are associated with apoptosis, inflammation and fibrotic effects in hepatic fibrosis in rats. Laboratory investigation; a journal of technical methods and pathology. 2010;90(12):1805-1816.
97. Xu MY, Hu JJ, Shen J, Wang ML, Zhang QQ, Qu Y, Lu LG. Stat3 signaling activation crosslinking of TGF-beta1 in hepatic stellate cell exacerbates liver injury and fibrosis. Biochimica et biophysica acta. 2014;1842(11):2237-2245.
98. Wang H, Lafdil F, Kong X, Gao B. Signal transducer and activator of transcription 3 in liver diseases: a novel therapeutic target. International journal of biological sciences. 2011;7(5):536-550.
99. Lin IY, Pan MH, Lai CS, Lin TT, Chen CT, Chung TS, Chen CL, Lin CH, Chuang WC, Lee MC, Lin CC, Ma N. CCM111, the water extract of Antrodia cinnamomea, regulates immune-related activity through STAT3 and NF-kappaB pathways. Scientific reports. 2017;7(1):4862.
100. Jablonska-Trypuc A, Matejczyk M, Rosochacki S. Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. Journal of enzyme inhibition and medicinal chemistry. 2016;31(sup1):177-183.
101. Preaux AM, Mallat A, Nhieu JT, D′Ortho MP, Hembry RM, Mavier P. Matrix metalloproteinase-2 activation in human hepatic fibrosis regulation by cell-matrix interactions. Hepatology (Baltimore, Md.). 1999;30(4):944-950.
102. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, Okuyama T, Takeda K, Akira S, Ogino T, Irani K, Ozaki M. Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. The Journal of clinical investigation. 2003;112(7):989-998.
103. Li J, Sapper TN, Mah E, Rudraiah S, Schill KE, Chitchumroonchokchai C, Moller MV, McDonald JD, Rohrer PR, Manautou JE, Bruno RS. Green tea extract provides extensive Nrf2-independent protection against lipid accumulation and NFkappaB pro- inflammatory responses during nonalcoholic steatohepatitis in mice fed a high-fat diet. Molecular nutrition & food research. 2016;60(4):858-870.
104. Kong X, Horiguchi N, Mori M, Gao B. Cytokines and STATs in Liver Fibrosis. Frontiers in physiology. 2012;3:69.
105. Lee WT, Lee TH, Cheng CH, Chen KC, Chen YC, Lin CW. Antroquinonol from Antrodia Camphorata suppresses breast tumor migration/invasion through inhibiting ERK-AP-1- and AKT-NF-kappaB-dependent MMP-9 and epithelial-mesenchymal transition expressions. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2015;78:33-41.
106. Lim JC, Goh FY, Sagineedu SR, Yong AC, Sidik SM, Lajis NH, Wong WS, Stanslas J. A semisynthetic diterpenoid lactone inhibits NF-kappaB signalling to ameliorate inflammation and airway hyperresponsiveness in a mouse asthma model. Toxicology and applied pharmacology. 2016;302:10-22.
107. Wu MD, Cheng MJ, Wang BC, Yech YJ, Lai JT, Kuo YH, Yuan GF, Chen IS. Maleimide and maleic anhydride derivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. Journal of natural products. 2008;71(7):1258-1261.
108. Lee MJ, Rao YK, Chen K, Lee YC, Chung YS, Tzeng YM. Andrographolide and 14-deoxy-11,12-didehydroandrographolide from Andrographis paniculata attenuate high glucose-induced fibrosis and apoptosis in murine renal mesangeal cell lines. Journal of ethnopharmacology. 2010;132(2):497-505.
109. O′Shea JJ, Holland SM, Staudt LM. JAKs and STATs in immunity, immunodeficiency, and cancer. The New England journal of medicine. 2013;368(2):161-170.
110. Norkina O, Dolganiuc A, Shapiro T, Kodys K, Mandrekar P, Szabo G. Acute alcohol activates STAT3, AP-1, and Sp-1 transcription factors via the family of Src kinases to promote IL-10 production in human monocytes. Journal of leukocyte biology. 2007;82(3):752-762.
111. Chen YF, Shiau AL, Wang SH, Yang JS, Chang SJ, Wu CL, Wu TS. Zhankuic acid A isolated from Taiwanofungus camphoratus is a novel selective TLR4/MD-2 antagonist with anti-inflammatory properties. Journal of immunology (Baltimore, Md. : 1950). 2014;192(6):2778-2786.
112. Lo HW, Cao X, Zhu H, Ali-Osman F. Cyclooxygenase-2 is a novel transcriptional target of the nuclear EGFR-STAT3 and EGFRvIII-STAT3 signaling axes. Mol Cancer Res. 2010;8(2):232-245.
113. Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, Pradere JP, Schwabe RF. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature communications. 2013;4:2823.
114. Hellerbrand C, Stefanovic B, Giordano F, Burchardt ER, Brenner DA. The role of TGFbeta1 in initiating hepatic stellate cell activation in vivo. Journal of hepatology. 1999;30(1):77-87.
115. Keibel A, Singh V, Sharma MC. Inflammation, microenvironment, and the immune system in cancer progression. Curr Pharm Des. 2009;15(17):1949-1955.
指導教授 馬念涵(Nianhan Ma) 審核日期 2018-11-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明