參考文獻 |
1. Organization.(2018)., W.H., A report about cancer Retrieved from https://www.who.int/cancer/en/.
2. Chaffer, C.L. and R.A. Weinberg, A Perspective on Cancer Cell Metastasis. Science, 2011. 331(6024): p. 1559.
3. Houghton, A.N. and D. Polsky, Focus on melanoma. Cancer Cell, 2002. 2(4): p. 275-278.
4. Zbytek, B., et al., Current concepts of metastasis in melanoma. Expert Rev Dermatol, 2008. 3(5): p. 569-585.
5. Ribas, A., Adaptive Immune Resistance: How Cancer Protects from Immune Attack. Cancer Discovery, 2015. 5(9): p. 915-919.
6. Fecher, L.A., R.K. Amaravadi, and K.T. Flaherty, The MAPK pathway in melanoma. 2008. 20(2): p. 183-189.
7. Shakhova, O., et al., Sox10 promotes the formation and maintenance of giant congenital naevi and melanoma. Nat Cell Biol, 2012. 14(8): p. 882-90.
8. Forbes, S.A., et al., The Catalogue of Somatic Mutations in Cancer (COSMIC). Current protocols in human genetics, 2008. Chapter 10: p. Unit-10.11.
9. Hodis, E., A landscape of driver mutations in melanoma. Cell, 2012. 150: p. 251-263.
10. Dankort, D., BrafV600E cooperates with Pten loss to induce metastatic melanoma. Nat. Genet., 2009. 41: p. 544-552.
11. Tsao, H., et al., Genetic interaction between NRAS and BRAF mutations and PTEN/MMAC1 inactivation in melanoma. J. Invest. Dermatol., 2004. 122: p. 337-341.
12. Komiya, Y. and R. Habas, Wnt signal transduction pathways. Organogenesis, 2008. 4(2): p. 68-75.
13. Mosimann, C., G. Hausmann, and K. Basler, β-Catenin hits chromatin: regulation of Wnt target gene activation. Nature Reviews Molecular Cell Biology, 2009. 10: p. 276.
14. Kulikova, K., et al., Wnt Signaling Pathway and Its Significance for Melanoma Development. Vol. 2012. 2012. 107-111.
15. Javelaud, D., V.I. Alexaki, and A. Mauviel, Transforming growth factor-beta in cutaneous melanoma. Pigment Cell Melanoma Res, 2008. 21(2): p. 123-32.
16. Leivonen, S.-K. and V.-M. Kähäri, Transforming growth factor-β signaling in cancer invasion and metastasis. International Journal of Cancer, 2007. 121(10): p. 2119-2124.
17. Lee, R.C., The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs
with Antisense Complementarity to lin-14. Cell, 1993. 75(843-854).
18. Wahid, F., et al., MicroRNAs: Synthesis, mechanism, function, and recent clinical trials. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2010. 1803(11): p. 1231-1243.
19. Meister, G., et al., Identification of novel argonaute-associated proteins. Curr Biol, 2005. 15(23): p. 2149-55.
20. Ingolia, N.T., et al., Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling. Science, 2009. 324(5924): p. 218-223.
21. Tuschl, G.M.T., Mechanisms of gene silencing by
double-stranded RNA. Nature 2004.
22. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. Cell, 2009. 136(2): p. 215-33.
23. Lee, I., et al., New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Research, 2009. 19(7): p. 1175-1183.
24. Forman, J.J. and H.A. Coller, The code within the code: microRNAs target coding regions. Cell cycle (Georgetown, Tex.), 2010. 9(8): p. 1533-1541.
25. MicroRNA Target Recognition: Insights from Transcriptome-Wide Non-Canonical Interactions. Molecules and Cells, 2016. 39(5): p. 375-381.
26. Calin, G.A., et al., Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A, 2004. 101(9): p. 2999-3004.
27. Esquela-Kerscher, A. and F.J. Slack, Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer, 2006. 6(4): p. 259-69.
28. Bader, A.G., D. Brown, and M. Winkler, The Promise of MicroRNA Replacement Therapy. Cancer Research, 2010. 70(18): p. 7027.
29. Li, X.J., Z.J. Ren, and J.H. Tang, MicroRNA-34a: a potential therapeutic target in human cancer. Cell Death &Amp; Disease, 2014. 5: p. e1327.
30. Rupaimoole, R. and F.J. Slack, MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017. 16(3): p. 203-222.
31. Gebert, L.F.R., et al., Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Research, 2014. 42(1): p. 609-621.
32. Betel, D., et al., The microRNA.org resource: targets and expression. Nucleic acids research, 2008. 36(Database issue): p. D149-D153.
33. Smalley, K.S., A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer, 2003. 104(5): p. 527-32.
34. Galaktionov, K. and D. Beach, Specific activation of cdc25 tyrosine phosphatases by B-type cyclins: Evidence for multiple roles of mitotic cyclins. Cell, 1991. 67(6): p. 1181-1194.
35. Jackman, M., M. Firth, and J. Pines, Human cyclins B1 and B2 are localized to strikingly different structures: B1 to microtubules, B2 primarily to the Golgi apparatus. The EMBO journal, 1995. 14(8): p. 1646-1654.
36. Liu, J.H., et al., Functional association of TGF-β receptor II with cyclin B. Oncogene, 1999. 18: p. 269.
37. Alla, V., et al., E2F1 in Melanoma Progression and Metastasis. JNCI: Journal of the National Cancer Institute, 2010. 102(2): p. 127-133.
38. Rouaud, F., et al., E2F1 inhibition mediates cell death of metastatic melanoma. Cell Death Dis, 2018. 9(5): p. 527.
39. Mauerer, A., et al., Identification of new genes associated with melanoma. Experimental Dermatology, 2011. 20(6): p. 502-507.
40. Qin, J., H. Xin, and B.J. Nickoloff, Specifically targeting ERK1 or ERK2 kills melanoma cells. J Transl Med, 2012. 10: p. 15.
41. Kaufmann, W.K., et al., Defective cell cycle checkpoint functions in melanoma are associated with altered patterns of gene expression. J Invest Dermatol, 2008. 128(1): p. 175-87.
42. Villanueva, J., et al., Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. Cancer cell, 2010. 18(6): p. 683-695.
43. Hallstrom, T.C., S. Mori, and J.R. Nevins, An E2F1-dependent gene expression program that determines the balance between proliferation and cell death. Cancer cell, 2008. 13(1): p. 11-22.
44. Li, C.-F., et al., E2F transcription factor 1 overexpression as a poor prognostic factor in patients with nasopharyngeal carcinomas. Biomarkers and Genomic Medicine, 2013. 5(1): p. 23-30.
45. Bertoli, G., et al., MicroRNA-567 dysregulation contributes to carcinogenesis of breast cancer, targeting tumor cell proliferation, and migration. Breast Cancer Research and Treatment, 2017. 161(3): p. 605-616.
46. Liu, D., et al., MicroRNA-567 inhibits cell proliferation, migration and invasion by targeting FGF5 in osteosarcoma. EXCLI journal, 2018. 17: p. 102-112.
47. Malumbres, M. and M. Barbacid, Mammalian cyclin-dependent kinases. Trends Biochem Sci, 2005. 30(11): p. 630-41. |