參考文獻 |
1. Ma, X., et al., Preparative isolation and purification of calycosin from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2002. 962(1-2): p. 243-247.
2. Ma, X., et al., Preparative isolation and purification of isoflavan and pterocarpan glycosides from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2004. 1023(2): p. 311-315.
3. Yan, H., et al., Chemical analysis of Astragalus mongholicus polysaccharides and antioxidant activity of the polysaccharides. Carbohydrate Polymers, 2010. 82(3): p. 636-640.
4. Ma, X., et al., Preparative isolation and purification of two isoflavones from Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao by high-speed counter-current chromatography. Journal of Chromatography A, 2003. 992(1-2): p. 193-197.
5. Traditional Chinese Medicine Astragalus membranaceus (Fischer) Bge. var. mongolicus (Bge.) Hsiao Exhibits Tumor Inhibitory Effect in HCT116 Colorectal Cancer Cells in vitro and in vivo. 2016.
6. GLOBOCAN. 2018. https://gco.iarc.fr/.
7. Promoting Your Health Health Promotion Administration. Ministry of Health and Welfare. 2016, December 28.
8. 曾若嫻, 民眾之大腸直腸癌認知與預防行為之探討---以某地區教學醫院大腸直腸癌篩檢民眾為例, in 醫務管理系. 2012, 嘉南藥理科技大學: 台南市. p. 87.
9. Lynch, H.T. and A. De la Chapelle, Hereditary colorectal cancer. New England Journal of Medicine, 2003. 348(10): p. 919-932.
10. Wang, J.-Y., Adjuvant chemotherapy of colorectal cancer. J Chinese Oncol Soc, 2008. 24: p. 180.
11. Cunningham, D., et al., Colorectal cancer. The Lancet, 2010. 375(9719): p. 1030-1047.
12. Group, Q.C., Adjuvant chemotherapy versus observation in patients with colorectal cancer: a randomised study. The Lancet, 2007. 370(9604): p. 2020-2029.
13. Mina, L.A. and G.W. Sledge Jr, Rethinking the metastatic cascade as a therapeutic target. Nature reviews Clinical oncology, 2011. 8(6): p. 325.
14. Fiorentini, G., et al., Multidisciplinary approach of colorectal cancer liver metastases. World journal of clinical oncology, 2017. 8(3): p. 190.
15. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. cell, 2011. 144(5): p. 646-674.
16. Bartel, D.P., MicroRNAs: target recognition and regulatory functions. cell, 2009. 136(2): p. 215-233.
17. Fu, J., et al., Identifying microRNA-mRNA regulatory network in colorectal cancer by a combination of expression profile and bioinformatics analysis. BMC systems biology, 2012. 6(1): p. 68.
18. Tang, W., et al., MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4. British journal of cancer, 2014. 110(2): p. 450.
19. Irwin, M.H. and C.A. Pinkert, 20 - Analysis of Transgene Expression, in Transgenic Animal Technology (Third Edition), C.A. Pinkert, Editor. 2014, Elsevier: London. p. 543-564.
20. Bandtlow, C.E., et al., Cellular localization of nerve growth factor synthesis by in situ hybridization. The EMBO journal, 1987. 6(4): p. 891-899.
21. Awgulewitsch, A. and M. Utset, Detection of specific RNA sequences in tissue sections by in situ hybridization. Methods in Nucleic Acids Research, CRC Press, Boca Raton, FL, 1991: p. 359-375.
22. Neidler, S., What are the differences between PCR, RT-PCR, qPCR, and RT-qPCR? 2017, 3.
23. miRTarBase. http://mirtarbase.mbc.nctu.edu.tw/php/index.php.
24. DAVID. 2009. https://david.ncifcrf.gov/.
25. NCBI. https://www.ncbi.nlm.nih.gov/.
26. Wang, T., et al., RETRACTED ARTICLE: Astragalus saponins affect proliferation, invasion and apoptosis of gastric cancer BGC-823 cells. Diagnostic pathology, 2013. 8(1): p. 179.
27. Wu, J.-J., et al., A standardized extract from Paeonia lactiflora and Astragalus membranaceus induces apoptosis and inhibits the proliferation, migration and invasion of human hepatoma cell lines. International journal of oncology, 2013. 43(5): p. 1643-1651.
28. Yoshida, Y., et al., Immunomodulating activity of Chinese medicinal herbs and Oldenlandia diffusa in particular. International Journal of Immunopharmacology, 1997. 19(7): p. 359-370.
29. Karius, T., et al., MicroRNAs in cancer management and their modulation by dietary agents. Biochemical pharmacology, 2012. 83(12): p. 1591-1601.
30. Li, Y., et al., Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical research, 2010. 27(6): p. 1027-1041.
31. Neelakandan, K., P. Babu, and S. Nair, Emerging roles for modulation of microRNA signatures in cancer chemoprevention. Current cancer drug targets, 2012. 12(6): p. 716-740.
32. Teiten, M.H., M. Dicato, and M. Diederich, Curcumin as a regulator of epigenetic events. Molecular nutrition & food research, 2013. 57(9): p. 1619-1629.
33. Lin, C.-L., et al., MicroRNA-29a promotion of nephrin acetylation ameliorates hyperglycemia-induced podocyte dysfunction. Journal of the American Society of Nephrology, 2014. 25(8): p. 1698-1709.
34. Sun, H., et al., miR‐486 regulates metastasis and chemosensitivity in hepatocellular carcinoma by targeting CLDN10 and CITRON. Hepatology Research, 2015. 45(13): p. 1312-1322.
35. Wang, Y.-Q., et al., MicroRNA-581 promotes hepatitis B virus surface antigen expression by targeting Dicer and EDEM1. Carcinogenesis, 2014. 35(9): p. 2127-2133.
36. Chen, P., et al., MiR-1297 regulates the growth, migration and invasion of colorectal cancer cells by targeting cyclo-oxygenase-2. Asian Pac J Cancer Prev, 2014. 15(21): p. 9185-90.
37. Liang, X., et al., MicroRNA-1297 inhibits prostate cancer cell proliferation and invasion by targeting the AEG-1/Wnt signaling pathway. Biochemical and biophysical research communications, 2016. 480(2): p. 208-214.
38. Zhao, H., et al., miR-30b regulates migration and invasion of human colorectal cancer via SIX1. Biochemical Journal, 2014. 460(1): p. 117-129.
39. Gu, Y.-f., et al., miR-30b and miR-30c expression predicted response to tyrosine kinase inhibitors as first line treatment in non-small cell lung cancer. Chinese medical journal, 2013. 126(23): p. 4435-4439.
40. Jana, S., et al., miR-216b suppresses breast cancer growth and metastasis by targeting SDCBP. Biochemical and biophysical research communications, 2017. 482(1): p. 126-133.
41. Kim, S.Y., Y.-H. Lee, and Y.-S. Bae, MiR-186, miR-216b, miR-337-3p, and miR-760 cooperatively induce cellular senescence by targeting α subunit of protein kinase CKII in human colorectal cancer cells. Biochemical and biophysical research communications, 2012. 429(3): p. 173-179.
42. Funamizu, N., et al., MicroRNA-301b promotes cell invasiveness through targeting TP63 in pancreatic carcinoma cells. International journal of oncology, 2014. 44(3): p. 725-734.
43. Li, P., et al., MicroRNA-205 functions as a tumor suppressor in colorectal cancer by targeting cAMP responsive element binding protein 1 (CREB1). American journal of translational research, 2015. 7(10): p. 2053.
44. Yang, Z., et al., MicroRNA-433 inhibits liver cancer cell migration by repressing the protein expression and function of cAMP response element-binding protein. Journal of Biological Chemistry, 2013. 288(40): p. 28893-28899.
45. Hoppe, R., et al., Increased expression of miR-126 and miR-10a predict prolonged relapse-free time of primary oestrogen receptor-positive breast cancer following tamoxifen treatment. European journal of cancer, 2013. 49(17): p. 3598-3608.
46. Stadthagen, G., et al., Loss of miR-10a activates lpo and collaborates with activated Wnt signaling in inducing intestinal neoplasia in female mice. PLoS genetics, 2013. 9(10): p. e1003913.
47. Yin, J., et al., Differential expression of serum miR-126, miR-141 and miR-21 as novel biomarkers for early detection of liver metastasis in colorectal cancer. Chinese Journal of Cancer Research, 2014. 26(1): p. 95.
48. Lu, L., et al., MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomedicine & pharmacotherapy, 2014. 68(1): p. 13-19.
49. Jia, W., et al., MicroRNA-30c-2* expressed in ovarian cancer cells suppresses growth factor induced cellular proliferation and downregulates the oncogene BCL9. Molecular Cancer Research, 2011: p. molcanres. 0245.2011.
50. Li, Z., et al., miR-495 and miR-551a inhibit the migration and invasion of human gastric cancer cells by directly interacting with PRL-3. Cancer letters, 2012. 323(1): p. 41-47.
51. Zhao, H., et al., Expression of miR-136 is associated with the primary cisplatin resistance of human epithelial ovarian cancer. Oncology reports, 2015. 33(2): p. 591-598.
52. Yao, Y., et al., MicroRNA profiling of human gastric cancer. Molecular medicine reports, 2009. 2(6): p. 963-970.
53. Ma, S., et al., MicroRNA-616 induces androgen-independent growth of prostate cancer cells by suppressing expression of tissue factor pathway inhibitor TFPI-2. Cancer research, 2011.
54. Harazono, Y., et al., miR-655 Is an EMT-suppressive microRNA targeting ZEB1 and TGFBR2. PloS one, 2013. 8(5): p. e62757.
55. Yu, J., et al., The microRNA-520a-3p inhibits proliferation, apoptosis and metastasis by targeting MAP3K2 in non-small cell lung cancer. American journal of cancer research, 2015. 5(2): p. 802.
56. Wu, N., et al., MiR-4782-3p inhibited non-small cell lung cancer growth via USP14. Cellular Physiology and Biochemistry, 2014. 33(2): p. 457-467.
57. Lan, F.F., et al., Hsa‐let‐7g inhibits proliferation of hepatocellular carcinoma cells by downregulation of c‐Myc and upregulation of p16INK4A. International Journal of Cancer, 2011. 128(2): p. 319-331.
58. Chen, Y., et al., MicroRNA 363 mediated positive regulation of c-myc translation affect prostate cancer development and progress. Neoplasma, 2015. 62(2): p. 191-198.
59. Li, B., et al., miR-503 suppresses metastasis of hepatocellular carcinoma cell by targeting PRMT1. Biochemical and biophysical research communications, 2015. 464(4): p. 982-987.
60. Chang, S.-W., et al., miR-503 inhibits cell proliferation and induces apoptosis in colorectal cancer cells by targeting E2F3. International journal of clinical and experimental pathology, 2015. 8(10): p. 12853.
61. Zheng, L., et al., miRNA-558 promotes gastric cancer progression through attenuating Smad4-mediated repression of heparanase expression. Cell death & disease, 2016. 7(9): p. e2382.
62. Chen, L., et al., miR-1207-5p and miR-1266 suppress gastric cancer growth and invasion by targeting telomerase reverse transcriptase. Cell death & disease, 2015. 5(1): p. e1034.
63. Zhang, S.-j., et al., miR-1303 targets claudin-18 gene to modulate proliferation and invasion of gastric cancer cells. Digestive diseases and sciences, 2014. 59(8): p. 1754-1763.
64. Shin, V.Y., et al., A three-miRNA signature as promising non-invasive diagnostic marker for gastric cancer. Molecular cancer, 2015. 14(1): p. 202.
65. miRCURY LNA microRNA Detection Probes. 2018.
66. Mattick, J.S. and I.V. Makunin, Non-coding RNA. Human molecular genetics, 2006. 15(suppl_1): p. R17-R29.
67. Mestdagh, P., et al., Non-coding RNAs and respiratory disease. Thorax, 2015. 70(4): p. 388-390. |