參考文獻 |
[1] 1 A K GeimK. S. Novoselov 1* S. V. Morozov,2 D. Jiang,1 Y.
Zhang,1 S. V. Dubonos,2 I. V. Grigorieva,1 A. A. Firsov2, “Electric Field Effect
in Atomically Thin Carbon Films,” Science (80-. )., vol. 306, no. October, pp. 666–
670, 2004.
[2] Y.Su, V. G.Kravets, S. L.Wong, J.Waters, A. K.Geim, andR. R.Nair,
“Impermeable barrier films and protective coatings based on reduced graphene
oxide,” Nat. Commun., vol. 5, pp. 1–5, 2014.
[3] V.Berry, “Impermeability of graphene and its applications,” Carbon
N. Y., vol. 62, no. May, pp. 1–10, 2013.
[4] S.Chen et al., “Oxidation resistance of graphene-coated Cu and Cu/Ni
alloy,” ACS Nano, vol. 5, no. 2, pp. 1321–1327, 2011.
-63-
[5] W. A.deHeer et al., “Epitaxial graphene,” Solid State Commun., vol.
143, no. 1–2, pp. 92–100, 2007.
[6] S.Shivaraman, M. V. S.Chandrashekhar, J. J.Boeckl, andM.
G.Spencer, “Thickness estimation of epitaxial graphene on sic using attenuation
of substrate raman intensity,” J. Electron. Mater., vol. 38, no. 6, pp. 725–730, 2009.
[7] P. K.Nayak, C. J.Hsu, S. C.Wang, J. C.Sung, andJ. L.Huang,
“Graphene coated Ni films: A protective coating,” Thin Solid Films, vol. 529, pp.
312–316, 2013.
[8] K.Qi, Y.Sun, H.Duan, andX.Guo, A corrosion-protective coating
based on a solution-processable polymer-grafted graphene oxide nanocomposite,
vol. 98. Elsevier Ltd., 2015.
[9] D.Prasai, J. C.Tuberquia, R. R.Harl, G. K.Jennings, andK. I.Bolotin,
“Graphene: Corrosion-inhibiting coating,” ACS Nano, vol. 6, no. 2, pp. 1102–1108,
2012.
[10] R. K.Singh Raman et al., “Protecting copper from electrochemical
degradation by graphene coating,” Carbon N. Y., vol. 50, no. 11, pp. 4040–4045,
2012.
[11] Z.Peng, R.Yang, M. A.Kim, L.Li, andH.Liu, “Influence of O 2 , H 2
O and airborne hydrocarbons on the properties of selected 2D materials,” RSC
-64-
Adv., vol. 7, no. 43, pp. 27048–27057, 2017.
[12] C. J.Wu, Y. F.Li, W. Y.Woon, Y. J.Sheng, andH. K.Tsao, “Contact
Angle Hysteresis on Graphene Surfaces and Hysteresis-free Behavior on Oilinfused Graphite Surfaces,” Appl. Surf. Sci., vol. 385, pp. 153–161, 2016.
[13] A. I.Aria, P. R.Kidambi, R. S.Weatherup, L.Xiao, J. A.Williams,
andS.Hofmann, “Time Evolution of the Wettability of Supported Graphene under
Ambient Air Exposure,” J. Phys. Chem. C, vol. 120, no. 4, pp. 2215–2224, 2016.
[14] C. J.Shih, M. S.Strano, andD.Blankschtein, “Wetting translucency of
graphene,” Nature Materials, vol. 12, no. 10. Nature Publishing Group, pp. 866–
869, 2013.
[15] R.Raj, S. C.Maroo, andE. N.Wang, “Wettability of graphene,” Nano
Lett., vol. 13, no. 4, pp. 1509–1515, 2013.
[16] Z.Li et al., “Effect of airborne contaminants on the wettability of
supported graphene and graphite,” Nat. Mater., vol. 12, no. 10, pp. 925–931, 2013.
[17] X.Li, L.Li, Y.Wang, H.Li, andX.Bian, “Wetting and interfacial
properties of water on the defective graphene,” J. Phys. Chem. C, vol. 117, no. 27,
pp. 14106–14112, 2013.
[18] J.Rafiee et al., “Wetting transparency of graphene,” Nat. Mater., vol.
11, no. 3, pp. 217–222, 2012.
-65-
[19] D.Öner andT. J.McCarthy, “Ultrahydrophobic surfaces. Effects of
topography length scales on wettability,” Langmuir, vol. 16, no. 20, pp. 7777–
7782, 2000.
[20] L.Gao andT. J.McCarthy, “Contact angle hysteresis explained.,”
Langmuir, vol. 22, no. 14, pp. 6234–6237, 2006.
[21] L.Gao andT. J.McCarthy, “How Wenzel and Cassie were wrong,”
Langmuir, vol. 23, no. 7, pp. 3762–3765, 2007.
[22] D.Guan, Y. J.Wang, E.Charlaix, andP.Tong, “Asymmetric and
Speed-Dependent Capillary Force Hysteresis and Relaxation of a Suddenly
Stopped Moving Contact Line,” Phys. Rev. Lett., vol. 116, no. 6, p. 066102, 2016.
[23] K.Sun et al., “Nanostructured Surface with Tunable Contact Angle
Hysteresis for Constructing in Vitro Tumor Model,” J. Nanomater., vol. 2016, pp.
1–6, 2016.
[24] A.Kozbial, C.Trouba, H.Liu, andL.Li, “Characterize the intrinsic
water wettability of graphite with contact angle measurement: effect of defects on
the static and dynamic contact angles,” Langmuir, p. acs.langmuir.6b04193, 2017.
[25] C.Lee, X.Wei, J. W.Kysar, andJ.Hone, “Measurement of the Elastic
Properties and Intrinsic Strength of Monolayer Graphene,” Science (80-. )., vol.
321, no. July, pp. 385–388, 2008.
-66-
[26] X.Tan, J.Wu, K.Zhang, X.Peng, L.Sun, andJ.Zhong,
“Nanoindentation models and Young’s modulus of monolayer graphene: A
molecular dynamics study,” Appl. Phys. Lett., vol. 102, no. 7, 2013.
[27] Y.Gao et al., “Ultrahard carbon film from epitaxial two-layer
graphene,” Nat. Nanotechnol., vol. 13, no. 2, pp. 133–138, 2018.
[28] C.-C.Chan, W.-L.Chung, andW.-Y.Woon, “Nucleation and growth
dynamics of graphene on oxygen exposed copper substrate,” Carbon N. Y., vol.
135, pp. 118–124, 2018.
[29] S.Wang, H.Hibino, S.Suzuki, andH.Yamamoto, “Atmospheric
Pressure Chemical Vapor Deposition Growth of Millimeter-Scale SingleCrystalline Graphene on the Copper Surface with a Native Oxide Layer,” Chem.
Mater., vol. 28, no. 14, pp. 4893–4900, 2016.
[30] X.Li et al., “Graphene films with large domain size by a two-step
chemical vapor deposition process,” Nano Lett., vol. 10, no. 11, pp. 4328–4334,
2010.
[31] L.Liu, M.Qing, Y.Wang, andS.Chen, “Defects in Graphene:
Generation, Healing, and Their Effects on the Properties of Graphene: A Review,”
J. Mater. Sci. Technol., vol. 31, no. 6, pp. 599–606, 2015.
[32] J. C.Meyer, C.Kisielowski, R.Erni, M. D.Rossell, M. F.Crommie,
-67-
andA.Zettl, “Direct Imaging of Lattice Atoms and Topological Defects in
Graphene Membranes - Nano Letters (ACS Publications),” vol. 12, 2018.
[33] C. J.Shih et al., “Breakdown in the wetting transparency of graphene,”
Phys. Rev. Lett., vol. 109, no. 17, pp. 1–5, 2012.
[34] D.Kim, N. M.Pugno, M. J.Buehler, andS.Ryu, “Solving the
Controversy on the Wetting Transparency of Graphene,” Nat. Publ. Gr., pp. 1–9,
2015.
[35] B.Ramos-Alvarado, S.Kumar, andG. P.Peterson, “On the wettability
transparency of graphene-coated silicon surfaces,” J. Chem. Phys., vol. 144, no. 1,
2016.
[36] D.Parobek andH.Liu, “Wettability of graphene,” 2D Mater., vol. 2,
no. 3, p. 032001, Jun.2015.
[37] X.Zhang, S.Wan, J.Pu, L.Wang, andX.Liu, “Highly hydrophobic and
adhesive performance of graphene films,” J. Mater. Chem., vol. 21, no. 33, p.
12251, 2011.
[38] C. W.Extrand, “Contact angles and hysteresis on surfaces with
chemically heterogeneous islands,” Langmuir, vol. 19, no. 9, pp. 3793–3796, 2003.
[39] M.Callies andD.Quéré, “On water repellency,” Soft Matter, vol. 1, no.
1, p. 55, 2005.
-68-
[40] L.Zhu, Y.Feng, X.Ye, andZ.Zhou, “Tuning wettability and getting
superhydrophobic surface by controlling surface roughness with well-designed
microstructures,” Sensors Actuators, A Phys., vol. 130–131, no. SPEC. ISS., pp.
595–600, 2006.
[41] C.Dorrer, “Advancing and Receding Motion of Droplets on
Ultrahydrophobic Post Surfaces,” no. 4, pp. 7652–7657, 2006.
[42] B. M. L.Koch, A.Amirfazli, andJ. A. W.Elliott, “Modeling and
Measurement of Contact Angle Hysteresis on Textured High-Contact-Angle
Surfaces,” 2014.
[43] C.Priest, T. W. J.Albrecht, R.Sedev, andJ.Ralston, “Asymmetric
Wetting Hysteresis on Hydrophobic Microstructured Surfaces,” vol. 25, no. 29,
pp. 5655–5660, 2009.
[44] V. A.Online, “The effect of drop size on contact angle measurements
of superhydrophobic surfaces,” pp. 1197–1203, 2014.
[45] H. Y.Erbil, “The debate on the dependence of apparent contact angles
on drop contact area or three-phase contact line : A review,” Surf. Sci. Rep., vol.
69, no. 4, pp. 325–365, 2014.
[46] S.Qiao, S.Li, Q.Li, B.Li, K.Liu, andX. Q.Feng, “Friction of Droplets
Sliding on Microstructured Superhydrophobic Surfaces,” Langmuir, vol. 33, no.
-69-
47, pp. 13480–13489, 2017.
[47] C. W.Extrand andY.Kumagai, “Liquid Drops on an Inclined Plane:
The Relation between Contact Angles, Drop Shape, and Retentive Force,” J.
Colloid Interface Sci., vol. 170, no. 2, pp. 515–521, Mar.1995.
[48] H. B.Eral, D. M.Augustine, M. H. G.Duits, andF.Mugele,
“Suppressing the coffee stain effect: How to control colloidal self-assembly in
evaporating drops using electrowetting,” Soft Matter, vol. 7, no. 10, pp. 4954–
4958, 2011.
[49] A. C.Ferrari andD. M.Basko, “Raman spectroscopy as a versatile tool
for studying the properties of graphene,” Nat. Nanotechnol., vol. 8, no. 4, pp. 235–
246, 2013.
[50] R.Beams, L.Gustavo Cançado, andL.Novotny, “Raman
characterization of defects and dopants in graphene,” J. Phys. Condens. Matter,
vol. 27, no. 8, 2015.
[51] L. M.Malard, M. A.Pimenta, G.Dresselhaus, andM. S.Dresselhaus,
“Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
[52] L. G.Cançado et al., “Quantifying Defects in Graphene via Raman
Spectroscopy at Different Excitation Energies,” Nano Lett., vol. 11, no. 8, pp.
3190–3196, Aug.2011.
-70-
[53] R.Sharma, N.Chadha, andP.Saini, “Determination of defect density,
crystallite size and number of graphene layers in graphene analogues using X-ray
diffraction and Raman spectroscopy,” Indian J. Pure Appl. Phys., vol. 55,
May2017.
[54] H. H.Kim, S. K.Lee, S. G.Lee, E.Lee, andK.Cho, “Wetting-Assisted
Crack- and Wrinkle-Free Transfer of Wafer-Scale Graphene onto Arbitrary
Substrates over a Wide Range of Surface Energies,” Adv. Funct. Mater., vol. 26,
no. 13, pp. 2070–2077, Apr.2016.
[55] J. K.Bal, S.Kundu, andS.Hazra, “Hydrophobic to hydrophilic
transition of HF-treated Si surface during Langmuir-Blodgett film deposition,”
Chem. Phys. Lett., vol. 500, no. 1–3, pp. 90–95, 2010.
[56] S. W.Schmucker, C. D.Cress, J. C.Culbertson, J. W.Beeman, O.
D.Dubon, andJ. T.Robinson, “Raman signature of defected twisted bilayer
graphene,” Carbon N. Y., vol. 93, pp. 250–257, 2015 |