參考文獻 |
[1] Gong J, Chehrazi-Raffle A, Reddi S, Salgia R. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6(1):8. Published 2018 Jan 23. doi:10.1186/s40425-018-0316-z
[2] Neelapu SS, Locke FL, Bartlett NL, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med 2017;377:2531-2544
[3] Onea AS1, Jazirehi AR1. CD19 chimeric antigen receptor (CD19 CAR)-redirected adoptive T-cell immunotherapy for the treatment of relapsed or refractory B-cell Non-Hodgkin’s Lymphomas
[4] Korbelik, M. Cancer vaccines generated by photodynamic therapy. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 664–669, DOI: 10.1039/c0pp00343c (2011).
[5] Korbelik, M. & Sun, J. Photodynamic therapy-generated vaccine for cancer therapy. CANCER IMMUNOLOGY IMMUNOTHERAPY 55, 900–909, DOI: 10.1007/s00262-005-0088-4 (2006).
[6] Gollnick, S., Vaughan, L. & Henderson, B. Generation of effective antitumor vaccines using photodynamic therapy. CANCER RESEARCH 62, 1604–1608 (2002).
[7] Korbelik, M., Sun, J. & Cecic, I. Photodynamic therapy-induced cell surface expression and release of heat shock proteins: Relevance for tumor response. CANCER RESEARCH 65, 1018–1026 (2005).
[8] Vega, V. L. et al. Hsp70 translocates into the plasma membrane after stress and is released into the extracellular environment in a membrane-associated form that activates macrophages.
JOURNAL OF IMMUNOLOGY 180, 4299–4307, DOI: 10.4049/jimmunol.180.6.4299 (2008).
[9] Segal, B. et al. Heat shock proteins as vaccine adjuvants in infections and cancer. DRUG DISCOVERY TODAY 11, 534–540, DOI: 10.1016/j.drudis.2006.04.016 (2006).
[10] Garg, A. D., Krysko, D. V., Vandenabeele, P. & Agostinis, P. DAMPs and PDT-mediated photo-oxidative stress: exploring the unknown. PHOTOCHEMICAL @AND@ PHOTOBIOLOGICAL SCIENCES 10, 670–680, DOI: 10.1039/c0pp00294a (2011).
[11] Keidar, M. et al. Cold plasma selectivity and the possibility of a paradigm shift in cancer therapy. BRITISH JOURNAL OF
CANCER 105, 1295–1301, DOI: 10.1038/bjc.2011.386 (2011).
[12] Ratovitski, E. A. et al. Anti-Cancer Therapies of 21st Century: Novel Approach to Treat Human Cancers Using Cold
Atmospheric Plasma. PLASMA PROCESSES AND POLYMERS 11, 1128–1137, DOI: 10.1002/ppap.201400071 (2014).
[13] Gay-Mimbrera, J. et al. Clinical and Biological Principles of Cold Atmospheric Plasma Application in Skin Cancer.
ADVANCES IN THERAPY 33, 894–909, DOI: 10.1007/s12325-016-0338-1 (2016).
[14] Su Chul Jang,Oh Youn Kim, Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano. 2013 Sep 24;7(9):7698-710. DOI: 10.1021/nn402232g (2013)
[15] Anthony Covarrubias1, Vanessa Byles1, Tiffany Horng1. ROS sets the stage for macrophage differentiation. Cell Research (2013) 23:984-985. DOI:10.1038/cr.2013.88; (2013)
[16] Theerawut Chanmee , Pawared Ontong , Kenjiro Konno. Tumor-Associated Macrophages as Major Players in the Tumor Microenvironment. Cancers 2014, 6, 1670-1690; DOI:10.3390/cancers6031670 (2014)
[17] Feifan Zhou, Da Xing. Regulation of HSP70 on activating macrophages using PDT induced apoptotic cells. Int J Cancer . 2009 September 15; 125(6): 1380–1389. DOI:10.1002/ijc.24520 (2009)
[18] Yang, M., McKay, D., Pollard, J. W. & Lewis, C. E. Diverse Functions of Macrophages in Different Tumor Microenviron-
ments. CANCER RESEARCH 78, 5492–5503, DOI: 10.1158/0008-5472.CAN-18-1367 (2018).
[19] Dayun Yan. Principles of using Cold Atmospheric Plasma Stimulated Media for Cancer Treatment.
[20] Pollard, J. Tumour-educated macrophages promote tumour progression and metastasis. NATURE REVIEWS CANCER 4,
71–78, DOI: 10.1038/nrc1256 (2004).
[21] Chanmee, T., Ontong, P., Konno, K. & Itano, N. Tumor-Associated Macrophages as Major Players in the Tumor
Microenvironment. CANCERS 6, 1670–1690, DOI: 10.3390/cancers6031670 (2014). |