參考文獻 |
1-1. Navarro, R.M., M.A. Peña, and J.L.G. Fierro, Hydrogen Production Reactions from Carbon Feedstocks: Fossil Fuels and Biomass. Chemical Reviews, 2007. 107(10): p. 3952-3991.
1-2. Huber, G.W., S. Iborra, and A. Corma, Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chemical Reviews, 2006. 106(9): p. 4044-4098.
1-3. Mattos, L.V., et al., Production of Hydrogen from Ethanol: Review of Reaction Mechanism and Catalyst Deactivation. Chemical Reviews, 2012. 112(7): p. 4094-4123.
1-4. Piscina, P.R.d.l. and N. Homs, Use of biofuels to produce hydrogen (reformation processes). Chemical Society Reviews, 2008. 37(11): p. 2459-2467.
1-5. Ni, M., D.Y.C. Leung, and M.K.H. Leung, A review on reforming bio-ethanol for hydrogen production. International Journal of Hydrogen Energy, 2007. 32(15 SPEC. ISS.): p. 3238-3247.
1-6. Kugai, J., S. Velu, and C. Song, Low-temperature reforming of ethanol over CeO2-supported Ni-Rh bimetallic catalysts for hydrogen production. Catalysis Letters, 2005. 101(3): p. 255-264.
1-7. Silva, A., et al., Effect of the metal nature on the reaction mechanism of the partial oxidation of ethanol over CeO2-supported Pt and Rh catalysts. Vol. 133-135. 2008. 755-761.
1-8. Li, M., et al., Density Functional Study of Ethanol Decomposition on Rh(111). The Journal of Physical Chemistry C, 2010. 114(49): p. 21493-21503.
1-9. Wang, J.-H., C.S. Lee, and M.C. Lin, Mechanism of Ethanol Reforming: Theoretical Foundations. The Journal of Physical Chemistry C, 2009. 113(16): p. 6681-6688.
1-10. Sheng, P.Y., et al., H2 Production from Ethanol over Rh–Pt/CeO2 Catalysts: The Role of Rh for the Efficient Dissociation of the Carbon–Carbon Bond. Journal of Catalysis, 2002. 208(2): p. 393-403.
1-11. Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
1-12. Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
1-13. Fierro, V., O. Akdim, and C. Mirodatos, On-board hydrogen production in a hybrid electric vehicle by bio-ethanol oxidative steam reforming over Ni and noble metal based catalysts. Green Chemistry, 2003. 5(1): p. 20-24.
1-14. Deluga, G.A., et al., Renewable Hydrogen from Ethanol by Autothermal Reforming. Science, 2004. 303(5660): p. 993.
1-15. Lee, A.F., et al., A Fast XPS study of the surface chemistry of ethanol over Pt{111}. Surface Science, 2004. 548(1): p. 200-208.
1-16. Weststrate, C.J., et al., Ethanol Adsorption, Decomposition and Oxidation on Ir(111): A High Resolution XPS Study. ChemPhysChem, 2007. 8(6): p. 932-937.
1-17. Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
1-18. Resta, A., et al., Acetate formation during the ethanol oxidation on Rh(111). Surface Science, 2006. 600(24): p. 5136-5141.
[2-1] Marchini, S., S. Günther, and J. Wintterlin, Scanning tunneling microscopy of graphene on Ru(0001). Physical Review B, 2007. 76(7): p. 075429.
[2-2] L. E. Davis, N.C.M., P. W. Palmberg, G. E. Riach, and R. E.Weber, Handbook of Auger Electron Spectroscopy. 1978: Perkin Elmer, Eden Prairie, MN.
[2-3] Pan, Y., D.-X. Shi, and H.-J. Gao, Formation of graphene on Ru(0001) surface. Chinese Physics, 2007. 16(11): p. 3151.
[2-4] Tersoff, J., Anomalous Corrugations in Scanning Tunneling Microscopy: Imaging of Individual States. Physical Review Letters, 1986. 57(4): p. 440-443.
[2-5] Himpsel, F.J., et al., Adsorbate band dispersions for C on Ru(0001). Surface Science, 1982. 115(3): p. L159-L164.
[2-6] Land, T.A., et al., STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition. Surface Science, 1992. 264(3): p. 261-270.
[2-7] Shavorskiy, A., et al., Dissociation of water on oxygen-covered Rh{111}. The Journal of Chemical Physics, 2009. 131(21): p. 214707.
[2-8] Vesselli, E., et al., Ethanol Decomposition: CC Cleavage Selectivity on Rh(111). ChemPhysChem, 2004. 5(8): p. 1133-1140.
[2-9] Resta, A., et al., Acetate formation during the ethanol oxidation on Rh(111). Surface Science, 2006. 600(24): p. 5136-5141.
[2-10] Vesselli, E., et al., Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions. Applied Catalysis A: General, 2005. 281(1): p. 139-147.
[2-11] Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
[2-12] Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
[2-13] Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
[3-1] J.B. Hudson, Surface Science: an introduction, J.Wiley & Sons, 1998.
[3-2] E.M. McCash, Surface Chemistry, Oxford University Press, 2001.
[3-3] H. Lüth, Surfaces and Interfaces of Solid Materials, Springer-Verlag, 1993.
[3-4] P. Hollins, J. Pritchard, Infrared studies of chemisorbed layers on single crystals, Progress in Surface Science, 19 (1985) 275-349.
[3-5] H. Ibach, Physics of Surfaces and Interfaces, Springer-Verlag, 2006.
[3-6] F.M. Hoffmann, Infrared reflection-absorption spectroscopy of adsorbed molecules, Surface Science Reports, 3 (1983) 107-192.
[3-7] E.S. A.M. Bradshaw, Infrared reflection absorption spectroscopy of adsorbed molecules, Wiley, New York, 1988.
[3-8] R.G. Greenler, Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques, The Journal of Chemical Physics, 44 (1966) 310-315.
[3-9] M. Bäumer, H.-J. Freund, Metal deposits on well-ordered oxide films, Progress in Surface Science, 61 (1999) 127-198.
[3-10] ABB FT-IR reference manual.
[3-11] 李冠卿, 近代光學, 聯經出版社, 1988.
[3-12] A. K. Stantra and D.W. Goodman, J.Phys: Condens Matter, Vol.14, R31 - R62. 2003.
[3-13] D.j. O’Connor, B. A. Sexton, R. St. C. Smart, Surface Analysis Methods in Materials Science, Springer-Verlag, 1992.
[3-14] Y. W. Yang, L. J. Fan, “High-Resolution XPS Study of Decanethiol on Au(111): Single Sulfur−Gold Bonding Interaction”, Langmuir, Vol. 18, pp. 1157 – 1164, 2002.
4-1. Caglar, B., et al., The effect of C–OH functionality on the surface chemistry of biomass-derived molecules: ethanol chemistry on Rh(100). Physical Chemistry Chemical Physics, 2016. 18(43): p. 30117-30127.
4-2. Vesselli, E., et al., Ethanol Decomposition: CC Cleavage Selectivity on Rh(111). ChemPhysChem, 2004. 5(8): p. 1133-1140.
4-3. Vesselli, E., et al., Ethanol auto-thermal reforming on rhodium catalysts and initial steps simulation on single crystals under UHV conditions. Applied Catalysis A: General, 2005. 281(1): p. 139-147.
4-4. Syu, C.-Y. and J.-H. Wang, Mechanistic Study of the Oxidative Steam Reforming of EtOH on Rh(111): The Importance of the Oxygen Effect. ChemCatChem, 2013. 5(10): p. 3164-3174.
4-5. Caglar, B., J.W. Niemantsverdriet, and C.J. Weststrate, Modeling the surface chemistry of biomass model compounds on oxygen-covered Rh(100). Physical Chemistry Chemical Physics, 2016. 18(34): p. 23888-23903.
4-6. 夏于耀, Oxidative Reforming of Ethanol on Rh(111): effect of co-adsorbed oxygen and hydroxyl,中央大學碩士論文,桃園縣,民國107年
|