參考文獻 |
[1] B.N. Jiang, and L.A. Povinelli, Least-Squares Finite element method for fluid dynamics, Comput. Methods. Appl. Mech. Engrg. 81 (1990) 13-37.
[2] F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, and G. Roge, A relationship between stabilized finite element methods and the Galerkin method with bubble functions,Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129.
[3] L.P. Franca, S.L. Frey, and T.J.R Hughes, Stabilized-finite element methods: I. Application to advective-diffusive model, Comput. Methods Appl. Mech. Engrg.
95 (1992) 253-276.
[4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems,Math.Models Methods Appl., 4 (1994)
571-587.
[5] L.P. Franca, and F. Charbel, On the Limitations of Bubble Functions, Comput. Methods Appl. Mech. Engrg. 117 (1994) 225-230.
[6] L.P. Franca, and F. Charbel, Bubble functions prompt unusual stabilized finite element methods, Comput. Methods. Appl. Mech. Engrg. 123 (1995) 299-308.
[7] T.F. Chen, G.J. Fix, and H.D. Yang, Numerical Studies of Optimal Grid Construction, Numer. Methods Partial Different. Eq. 12 (1996) 191-206.
[8] L.P. Franca, and A. Russo , Mass lumping emanating from residual-free bubbles, Comput. Methods Appl. Mech. Engrg. 142 (1997) 353-360.
[9] F. Brezzi, L.P. Franca, A. Russo, Further considerations on the residual-free bubbles for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg.
166 (1998) 25-33.
[10] B.N. Jiang, On the least-squares method, Comput. Methods Appl. Mech. Engrg. 152 (1998) 239-257
[11] J.M. Fiard, T.A. Manteu®el, and S.F. Mccormick, First-order sustem leasts squares (FOSLS) for convection-diffusion problems: numerical results, SIAM
J. Sci. Comput. 19 (1998) 1958-1979.
[12] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg. 166 (1998) 35-49.
[13] L.P. Franca, and A.P. Macedo, A two-level finite element method and its application to Helmholtz equation, Int. J. Numer. Methods Engrg. 43 (1998) 23-42.
[14] P.B. Bochev, and J. Choi, A Comparative Study of Least-squares, SUPG and Galerkin Methods for Convection Problem, Int. J. Comput. Fluids 15 (2001)
127-146.
[15] L.P. Franca, and A. Nesliturk, On a two-level finite element method to the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Engrg 52 (2001)
433-453.
[16] L.P. Franca, and F.N. Hwang, Refining the submesh strategy in the two-level finite element method: Application to the advection-diffusion equation, Int. J.
Numer. Meth. Fluids 39 (2002) 161-187.
[17] L.P. Franca LP, G. Hauke and A. Masud, Revisiting stabilized finite element methods for the advective-diffusive equation, Comput. Methods Appl. Mech. En-
grg. 195 (2006) 1560-1572.
[18] M. Parvazinia, V. Nassehi, and R.J Wakeman, Multi-scale finite element modelling using bubble function method for a convection-diffusion problem , Chem.
Engrg. Sci. 61 (2006) 2742-2751.
[19] A. Russo, Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubble (RFB), Comput. Methods Appl. Mech. Engrg. 195 (2006) 1608-1620.
[20] C. Johnson, Numerical Solution of Partial Differential Equation by the Finite
Element Method, Cambridge University Press, Cambridge, 1987.
[21] K.W Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall Press, 1996
[22] S.A. Berger, W. Goldsmith, and E.R. Lewis, Introduction to bioengineering, Ox-
ford University Press, 1996
[23] B.N. Jiang. The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998
[24] D. Jean, and H. Antonio, Finite Element Methods for Flow Problems, John Wiley & Sons Inc Press, 2003.
[25] S.C. Breneer, and L.R. Scott, The Mathmatical Theory of Finite Element Method, Springer-Verlag, New-York, 1994. |