博碩士論文 952201028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.223.158.132
姓名 高仕超(Shih-Chao Kao)  查詢紙本館藏   畢業系所 數學系
論文名稱 最小平方有限元素法求解對流擴散方程以及使用Bubble函數的改良
(Some Residual-Free Bubble Enrichment Least-Squares Finite Element Method for the Convection-Diffusion Equation)
相關論文
★ 非線性塊狀高斯消去牛頓演算法在噴嘴流體的應用★ 以平行 Newton-Krylov-Schwarz 演算法解 Poisson-Boltzmann 方程式的有限元素解在膠體科學上的應用
★ Bifurcation Analysis of Incompressible Sudden Expansion Flows Using Parallel Computing★ Parallel Jacobi-Davidson Algorithms and Software Developments for Polynomial Eigenvalue Problems in Quantum Dot Simulation
★ An Inexact Newton Method for Drift-DiffusionModel in Semiconductor Device Simulations★ Numerical Simulation of Three-dimensional Blood Flows in Arteries Using Domain Decomposition Based Scientific Software Packages in Parallel Computers
★ A Parallel Fully Coupled Implicit Domain Decomposition Method for the Stabilized Finite Element Solution of Three-dimensional Unsteady Incompressible Navier-Stokes Equations★ A Study for Linear Stability Analysis of Incompressible Flows on Parallel Computers
★ Parallel Computation of Acoustic Eigenvalue Problems Using a Polynomial Jacobi-Davidson Method★ Numerical Study of Algebraic Multigrid Methods for Solving Linear/Nonlinear Elliptic Problems on Sequential and Parallel Computers
★ A Parallel Multilevel Semi-implicit Scheme of Fluid Modeling for Numerical Low-Temperature Plasma Simulation★ Performance Comparison of Two PETSc-based Eigensolvers for Quadratic PDE Problems
★ A Parallel Two-level Polynomial Jacobi-Davidson Algorithm for Large Sparse Dissipative Acoustic Eigenvalue Problems★ A Full Space Lagrange-Newton-Krylov Algorithm for Minimum Time Trajectory Optimization
★ Parallel Two-level Patient-specific Numerical Simulation of Three-dimensional Rheological Blood Flows in Branching Arteries★ A Markov Chain Multi-elimination Preconditioner for Elliptic PDE Problems on GPU
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本篇論文中,我們使用最小平方有限元素法來求解對流擴散方程中的對流佔優問題,發現到最小平方有限元素法中使用線性基底函數來求解對流佔優問題,其所求得的解並不理想,而傳統的網格加密的方法對最小平方有限元素法並不ㄧ個經濟的方法,因此我們使用RFB 方法對最小平方有限元素法進行改良的工作,這是ㄧ個新的應用。而數值結果顯示這個新的方法對於求解對流佔優問題有相當不錯的改良效果。
摘要(英) In this thesis, we formulate the least-squares finite element method using piececewise linears to solve the convection-diffusion equation which is convection-dominated and we find that the solution is diffusive and the classical mesh refinement for the least-squares finite element method is not an economical method. Then we use the
residual-free bubble method to enrich the least-squares finite element method. This is a new application of residual-free bubble method and we solve some test problems. The numerical results show that the residual-feee bubble method for the least-squares finite element method has a good effect of enrichment。
關鍵字(中) ★ 最小平方
★ 有限元素法
★ 對流擴散方程式
★ Residual-free bubble
關鍵字(英) ★ least-squares
★ finite element method
★ residual-free bubble
★ convection-diffusion equation
論文目次 中文摘要.................................................i
英文摘要................................................ii
致謝詞.................................................iii
目錄....................................................iv
圖目錄...................................................v
表目錄..................................................vi
1.Introduction...........................................2
2. The LSFEM for the convection-diffusion equation.......4
3. The LSFEM enriched by a residual-free bubble method...8
3.1. Analytical approach............................... 13
3.2. Numerical approach.................................15
4. Numerical results....................................16
5. Conclusion...........................................29
Reference...............................................29
參考文獻 [1] B.N. Jiang, and L.A. Povinelli, Least-Squares Finite element method for fluid dynamics, Comput. Methods. Appl. Mech. Engrg. 81 (1990) 13-37.
[2] F. Brezzi, M.O. Bristeau, L.P. Franca, M. Mallet, and G. Roge, A relationship between stabilized finite element methods and the Galerkin method with bubble functions,Comput. Methods Appl. Mech. Engrg. 96 (1992) 117-129.
[3] L.P. Franca, S.L. Frey, and T.J.R Hughes, Stabilized-finite element methods: I. Application to advective-diffusive model, Comput. Methods Appl. Mech. Engrg.
95 (1992) 253-276.
[4] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems,Math.Models Methods Appl., 4 (1994)
571-587.
[5] L.P. Franca, and F. Charbel, On the Limitations of Bubble Functions, Comput. Methods Appl. Mech. Engrg. 117 (1994) 225-230.
[6] L.P. Franca, and F. Charbel, Bubble functions prompt unusual stabilized finite element methods, Comput. Methods. Appl. Mech. Engrg. 123 (1995) 299-308.
[7] T.F. Chen, G.J. Fix, and H.D. Yang, Numerical Studies of Optimal Grid Construction, Numer. Methods Partial Different. Eq. 12 (1996) 191-206.
[8] L.P. Franca, and A. Russo , Mass lumping emanating from residual-free bubbles, Comput. Methods Appl. Mech. Engrg. 142 (1997) 353-360.
[9] F. Brezzi, L.P. Franca, A. Russo, Further considerations on the residual-free bubbles for advective-diffusive equations, Comput. Methods Appl. Mech. Engrg.
166 (1998) 25-33.
[10] B.N. Jiang, On the least-squares method, Comput. Methods Appl. Mech. Engrg. 152 (1998) 239-257
[11] J.M. Fiard, T.A. Manteu®el, and S.F. Mccormick, First-order sustem leasts squares (FOSLS) for convection-diffusion problems: numerical results, SIAM
J. Sci. Comput. 19 (1998) 1958-1979.
[12] L.P. Franca, A. Nesliturk and M. Stynes, On the stability of residual-free bubbles for convection-diffusion problems and their approximation by a two-level finite element method, Comput. Methods Appl. Mech. Engrg. 166 (1998) 35-49.
[13] L.P. Franca, and A.P. Macedo, A two-level finite element method and its application to Helmholtz equation, Int. J. Numer. Methods Engrg. 43 (1998) 23-42.
[14] P.B. Bochev, and J. Choi, A Comparative Study of Least-squares, SUPG and Galerkin Methods for Convection Problem, Int. J. Comput. Fluids 15 (2001)
127-146.
[15] L.P. Franca, and A. Nesliturk, On a two-level finite element method to the incompressible Navier-Stokes equations, Int. J. Numer. Meth. Engrg 52 (2001)
433-453.
[16] L.P. Franca, and F.N. Hwang, Refining the submesh strategy in the two-level finite element method: Application to the advection-diffusion equation, Int. J.
Numer. Meth. Fluids 39 (2002) 161-187.
[17] L.P. Franca LP, G. Hauke and A. Masud, Revisiting stabilized finite element methods for the advective-diffusive equation, Comput. Methods Appl. Mech. En-
grg. 195 (2006) 1560-1572.
[18] M. Parvazinia, V. Nassehi, and R.J Wakeman, Multi-scale finite element modelling using bubble function method for a convection-diffusion problem , Chem.
Engrg. Sci. 61 (2006) 2742-2751.
[19] A. Russo, Streamline-upwind Petrov/Galerkin method (SUPG) vs residual-free bubble (RFB), Comput. Methods Appl. Mech. Engrg. 195 (2006) 1608-1620.
[20] C. Johnson, Numerical Solution of Partial Differential Equation by the Finite
Element Method, Cambridge University Press, Cambridge, 1987.
[21] K.W Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall Press, 1996
[22] S.A. Berger, W. Goldsmith, and E.R. Lewis, Introduction to bioengineering, Ox-
ford University Press, 1996
[23] B.N. Jiang. The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998
[24] D. Jean, and H. Antonio, Finite Element Methods for Flow Problems, John Wiley & Sons Inc Press, 2003.
[25] S.C. Breneer, and L.R. Scott, The Mathmatical Theory of Finite Element Method, Springer-Verlag, New-York, 1994.
指導教授 黃楓南(Feng-Nan Hwang) 審核日期 2008-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明