博碩士論文 105328014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.118.198.83
姓名 王柏盛(Po-Sheng Wang)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 銀輔助化學蝕刻多孔矽梯度結構製備與其濕潤性研究
(Fabrication and Wettability of gradient porous silicon by silver metal assisted chemical etching)
相關論文
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 常壓下熱電材料特性量測方法之模擬與分析
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 微致冷器之致冷特性數值模擬分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 多孔矽製備與熱傳特性量測之研究★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用聲子波茲曼方程式模擬非均質奈米多孔材料之熱傳性質★ 利用電子束微影製作高密度石英柱狀結構
★ 薄膜陣列結構微致冷器致冷特性數值模擬★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著時代的發展,奈米科技已經成為我們生活周遭不可或缺的技術,多年來隨著技術的發展成熟,多孔矽奈米技術已經成為半導體製程及能源產業中舉足輕重的重要角色。而金屬輔助化學蝕刻可利用兩步法(Two-step method)製程製備出多孔矽結構,其製程簡易及成本較低等優點於近年研究中得到相當的注目。在生醫方面,微流道為備受關注的主題,其中研究微流體需要探討流體於材料的親疏水之濕潤性質,若需要在微小流體上進行遷移動作,可以透過改變物體表面之微奈米結構改變其濕潤性。

本文利用金屬輔助化學蝕刻,其製程簡易且不需在高壓或高溫環境下即可進行實驗之特點,先以無電鍍沉積法進行銀粒子沉積,再利用蝕刻液使銀粒子於矽表面發生氧化反應從而進行非等向性蝕刻,研究其蝕刻液於常溫及變溫情況下,對於蝕刻深度及結構之影響。實驗結果顯示於適當蝕刻溫度可給予蝕刻結構深度與孔隙率良好之助力,再將蝕刻後之試片進行接觸角量測,探討不同表面結構對於液珠接觸角之影響。

最後綜合上述實驗結果,以將矽試片拉出蝕刻液之方法,製備出具有梯度結構之多孔矽試片,並觀察其接觸角與液珠滑動之情形。實驗結果顯示,液珠於梯度結構表面之驅動力過小,但透過一頃斜平台轉動角度使液珠滑動可得知,液珠於大接觸角端所需滑動之臨界角度小於小接觸角端之滑動臨界角,並且其液珠加速度之提升更為快速。
摘要(英) In recent years, nanoporous silicon plays an important role in the semiconductor industry and energy industry. Two-step metal assisted chemical etching method has the advantages of low cost and simple processes. In biomedical and microfluidic systems, the hydrophobicity of materials must be considered. We can control a fluid drop to move on a solid surface by changing the hydrophobicity of surface material with nano structures.

We deposit silver particles with electro-less plating deposition method, followed by the anisotropic etch of the silicon surface by oxidation of etchant and silver particles. We apply different temperature to see how it affects the etching depths and the structures. Appropriate temperature helps to achieve best etching depth and porousity. We also determine the effects of different surface structures on droplet contact angles.

We find that the driving force to make the droplet move is too small on the nano porous silicon surface we made. So we use a tilt platform to increase the driving force to observe the effects easily. The critical angle at the larger contact angle side is smaller than the one at the smaller contact angle side, and is faster in the increase of the acceleration of the droplet.
關鍵字(中) ★ 金屬輔助化學蝕刻
★ 多孔矽
★ 濕潤性
關鍵字(英) ★ Metal-Assisted Chemical Etching
★ porous silicon
★ wettability
論文目次 摘要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 xv
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1 金屬輔助化學蝕刻 2
1-2-2 表面結構對於液體濕潤性 6
1-3 研究動機與目的 9
1-4 論文架構 10
第二章 理論基礎 11
2-1 奈米線結構製備 11
2-1-1 一維奈米線結構合成種類 11
2-2 金屬輔助化學蝕刻製程 20
2-2-1 無電鍍金屬沉積 20
2-2-2 金屬輔助化學蝕刻 21
2-3 濕潤理論 23
2-3-1 楊氏方程式(Young’s equation) 23
2-3-2 溫佐模型(Wenzel Model) 27
2-3-3 卡西模型(Cassie and Baxter Model) 28
第三章 研究方法 30
3-1 研究架構 30
3-2 實驗製程 32
3-2-1 實驗藥品與器材 32
3-2-2 實驗步驟 33
3-3 量測儀器與分析 38
3-3-1 場發射掃描電子顯微鏡 38
3-3-2 原子力顯微鏡 39
3-3-3 接觸角與液珠滑動分析 40
第四章 結果與討論 43
4-1 奈米銀粒子沉積結果 43
4-1-1 SEM圖及其二值化 44
4-1-2 AFM圖及其分析 46
4-2 多孔矽結構蝕刻結果 48
4-2-1 氧化層影響 48
4-2-2 常溫下蝕刻結果與分析 50
4-2-3 變溫蝕刻下結果與分析 65
4-2-4 蝕刻梯度結構結果與分析 76
4-3 接觸角量測與分析 88
4-3-1 變溫蝕刻試片 88
4-3-2 梯度結構試片 92
4-4 阿瑞尼斯方程式(Arrhenius equation) 97
4-5 梯度結構液珠滑動分析 98
第五章 結論與未來展望 109
5-1 結論 109
5-2 未來展望 110
參考文獻 111
參考文獻 [1] L. T. Canham, "Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers", Appl. Phys., Lett. 57, pp.1046, 1990.

[2] D. Dimova-Malinnovska, M. Sendova-Vassileva, "Preparation of thin porous silicon layers by stain etching", Thin Solid Films, pp.297, 1997.
[3] X. Li, P. W. Bohn, "Metal-assisted chemical etching in HF/H2O2 produces porous silicon′′, Applied Physics Letters, Vol.77, pp2572-2574, 2000.

[4] J. L. Tian, H. Y. Zhang,′′Controllable growth od silicon nanowire arrays fabricated by two-step siliver catalyzed chemical etching′′, Superlattices and Microstructures, Vol.88, pp.180-187, 2015.

[5] Yousong Liu, Guangbin Ji, Junyi Wang, Xuanqi Liang, Zewen Zuo, Yi Shi,′′Fabrication and photocatalytic properties of silicon nanowires by metal-assisted chemical etching: effect of H2O2 concentration′′, Nanoscale Research Letters, Vol.7, pp.663, 2012.

[6] W. Barthlott and C. Neinhuis, ′′Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces′′, Planta, Vol. 202, pp. 1-8, 1997.

[7] C. Sun, X. W. Zhao, Y. H. Han, Z. Z. Gu, ′′Control of water droplet motion by alteration of roughness gradient on silicon wafer by laser surface treatment", Thin
Solid Films 516, pp. 4059-4063, 2008.

[8] W. Zhang, X. Fan, S. Sang, P. Li, G. Li, Y. Sun, and J. Hu, ′′Fabrication and characterization of silicon nanostructures based on metal-assisted chemical etching′′, Korean J. Chem. Eng., Vol.31, pp.62-67, 2013.

[9] M. Y. Chen, Z. H. Jia, T. Zhang, Y. Y. Fei, ′′Self-propulsion of Leidenfrost droplets on micropillared hot surfaces with gradient wettability′′, Applied Surface Science, Vol.433, pp.336-340, 2018.

[10] M. P. Pileni, Barry W. Ninham, T. Gulik-Krzywicki, J. Tanori, I. Lisiecki, A.Filankembo, ′′Direct relationship between shape and size of template and synthesis of copper mental particles′′, Adv. Mater, Vol.16, pp.1358-1362, 1999.

[11] Mark C. Draper , Colin R. Crick, Viktorija Orlickaite , ′′Superhydrophobic surfaces as an on-chip microfluidic toolkit for total droplet control′′, Anal. Chem., Vol.85, pp.5405–5410, 2013.

[12] L. C. Chen, S. W. Chang, C. S. Chang, "Catalyst-free and controllable growth of SiCxNy nanorods", J Phys. & Chem. Solids, Vol.62, pp.1567–1576, 2001.

[13] Y. Wu, Y. Cui, L. Huynh, C. J. Barrelet, D. C. Bell, and C. M. Lieber, "Controlled Growth Structures of Molecular-Scale Silicon Nanowires", Nano Lett., Vol.4, pp.443-436, 2004.

[14] N. Wang, Y. F. Zhang, Y. H. Tang, C.S. Lee, S. T. Lee, "Oxide-assisted growth and optical characterization of gallium-arsenide nanowire", Appl. Phys. Lett., Vol.78, pp. 3304, 2001.

[15] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display”, Appl. Phys. Lett., Vol.75, no.20, pp.3129-3131, 1999.

[16] Stephen Y. Chou, Chris Keimel, Jian Gu, “Ultrafast and direct imprint of nanostructures in silicon”, Nature, Vol.417, pp.835-837, 2002.

[17] T. Young, "An Essay on the Cohesion of Fluids", Philosophical Transactions of the Royal Society, Vol.95, pp.65-87, 1805.

[18] R. N. Wenzel, "Resistance of solid surfaces to wetting by water", Ind. Eng. Chem.,
Vol.28, pp.988-994, 1936.

[19] A.B.D.Cassie, S.Baxter, "Wettability of porous surface", Transactions Faraday Society, Vol.40, pp.546-551, 1944.

[20] M. Lajvardi, H. Eshghi, "Structural and optical properties of silicon nanowires synthesized by Ag assisted chemical etching", Materials Science in Semiconductor Processing, Vol.40, pp.556-563, 2015.

[21] Z. Huang, N. Geyer, P. Werner, J. de Boor, U. Gösele , "Metal-assisted chemical
etching of silicon", Adv. Mater., Vol.23, pp.285–308, 2011.

[22] H. Omar, M. J. Salifairus, S. A. H. Alrokayan, H. A. Khan, A. M. M. Jani, M. R. Mahmood, S. Abdullah, "Effect of temperature to the structure of silicon nanowires growth by metal-assisted chemical etching", 2015 IEEE Student Conference on Research and Development, SCOReD 2015, pp. 649-652, 2016.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2019-3-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明