以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:43 、訪客IP:18.223.170.18
姓名 吳汶靜(Wen-Ching Wu) 查詢紙本館藏 畢業系所 統計研究所 論文名稱 強餘震之即時貝氏預測
(Near real-time Bayesian forecast of strong aftershocks)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] 至系統瀏覽論文 ( 永不開放) 摘要(中) 在大地震發生後,經常需要進行緊急的救災或是補強弱化結構的行動,為降低救災風險且順利進行結構補強,強餘震的即時風險評估是非常重要的。針對此一研究問題,傳統上採用RJ模式(Reasenberg and Jones ,1989)研究餘震發生的時間及規模分布,因為RJ模式假設餘震的發生時間與規模獨立,Chen等人(2015)修正RJ模式提出餘震規模分布與時間相依的MRJ模式。利用最大概似法估計在主震發生後的初期因為資料不足,RJ或MRJ模式無法獲得可靠的風險評估預測,故使用貝氏方法。因此本文考慮利用貝氏方法估計RJ和MRJ模式,並據以評估和預測餘震的風險。上述兩種模式分別應用最大概似估計方法與貝氏方法,針對下列三個餘震序列2008 發生在龍門山斷層的中國汶川地震、1999 發生在車籠埔斷層的台灣集集地震以及2011 發生在日本的東北大地震,說明如何進行強餘震的即時預測。 摘要(英) Emergency rescue and structure reinforcement are often needed after a drastic earthquake. To reduce the hazard while doing the work, the near real-time assessment of strong aftershocks is of great urgent demand.. To do so, the RJ (Reasenberg and Jones, 1989) model is conventionally used to study the time-magnitude hazard of aftershocks. On the other hand, Chen et al. (2015) proposed a modified RJ (MRJ) model that includes a time-dependent magnitude distribution. Note that the low detection capability of aftershocks right after the main shock often leads to sparse data and hence the maximum likelihood inference or forecast may not be valid. Therefore, Bayesian methods are employed to analyze the RJ and MRJ models for the assessment of the time-magnitude hazard of aftershocks. The gridding method is further used to explore or forecast the spatial hazard of aftershocks. Analyses of relevant models are illustrated for three aftershock sequences, after 2008 7.9 Wenchuan, China, earthquake、1999 7.7 Chi-Chi, Taiwan, earthquake and 2011 9.0 Tohoku, Japan, earthquakes. 關鍵字(中) ★ 大森餘震發生率法則
★ 古騰堡-芮克德 地震規模頻率法則
★ 瑞森伯格-瓊斯 餘震時間規模風險模式
★ 貝氏分析關鍵字(英) ★ Omori-Utsu law
★ Gutenberg-Richter magnitude frequency law
★ Reasenberg- Jones time-magnitude model
★ Bayesian analysis論文目次 摘要...................................................................................................i Abstract...............................................................................................ii 致謝...................................................................................................iii
目錄...................................................................................................iv 圖目次................................................................................................vi 表目次.................................................................................................x 第一章 緒論....................................................................................1
1-1 研究動機...................................................................................1 第二章 文獻回顧.................................................................................3
2-1 餘震時間-規模風險模式..............................................................3
2-2 餘震時間-規模風險的修正模式.....................................................6 第三章 餘震風險的貝氏分析..................................................................10
3-1 餘震時間-規模風險函數之貝氏分析.............................................10
3-2 修正餘震時間-規模風險函數之貝氏分析.......................................12 第四章 資料分析..................................................................................13
4-1 汶川大地震風險評估..................................................................13 4-1-1 餘震時間-規模風險評估與預測................................................13 4-1-2 餘震空間風險評估與預測.........................................................15 4-2 集集地震風險評估.....................................................................16 4-2-1 餘震時間-規模風險評估與預測................................................16 4-2-2 餘震空間風險評估與預測.........................................................18
4-3 日本東北大地震風險評估............................................................18
4-3-1 餘震時間-規模風險評估與預測................................................18
4-3-2 餘震空間風險評估與預測.........................................................20 第五章 結論與討論...............................................................................22
參考文獻.............................................................................................23參考文獻 Aki. K., 1965. Maximum likelihood estimate of b in the formula logN=a-bM and its confidence limits. Bull. Earthquake Res. Inst. 43, 237-239.
Chen, Y. I., Huang, C. S. and Liu, J. Y., 2015. Statistical analysis of earthquakes after the 1999 Mw 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model. Journal of Asian Earth Sciences, 114, 299-304.
Gutenberg, R. and C. F. Richter., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185-188.
Hasting, W. K.,1970. Monte Carlo sampling methods using Markov chains and their applications.Biometrika, 57, 97–109.
Holschneider M.; Narteau, C.; Shebalin, P.; Peng, Z.; Schorlemmer, D., 2012. Bayesian analysis of the modified Omori law. J. Geophys. Res. 117, B06317. Doi:10.1029/2011JB009054.
Kisslinger, C.; Jones, L.M., 1991. Properties of aftershocks in southern California. J. Geophys. Res. 96, 11947-11958.
Metropolis, N., Rosenbluth, A. W., Teller, A. H., and Teller,E., 1953. Equation of state calculations by fast computingmachines, Journal of Chemical Physics, 21,1087-1091.
Ogata, Y., 1983, Estimation of the parameters in the modified 359 Omori formula for aftershock sequences by the maximum likelihood procedure. J. Phys, Earth, 31, 115-124.
Omori, F., 1894. On the aftershocks of earthquake. J. ColI. Sci. Imp. Univ. Tokyo, 7, 111-200. Reasenberg, P. A. and L. M. Jones., 1989. Earthquake hazard after a mainshock in California.
Science, 243, 1173-1176.
Reasenberg, P. A. and L. M. Jones., 1994. Earthquake aftershocks:update. Science, 265, 1251-
1252.
Utsu, T., 1961. A statistical study on the occurrence of aftershocks. Geophy. Mag.30, 521- 605.
Utsu, T., Ogata, Y., Matsu’ura, R.S., 1995. The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 30, 521-605.
Wiemer, S. and K. Katsumata, 1999. Spatial variability of seismicity parameters in aftershock zones. Journal of Geophysical Research, 103, 13, 135-13, 151.
Wiemer, S. and M. Wyss, 2000. Minimum magnitude of completeness in earthquake catalogs: Examples from Alaska, the western US and Japan. Bulletin of the Seismological Society of America, 90, 859-869.
Wiemer, S., 2000. Introducing probabilistic aftershock hazard mapping. Geophys. Res. Lett. 27, 3405-3408.
Youden, W. J., 1950. Index for rating diagnostic tests. Cancer. 3, 32- 35.指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2019-1-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare