博碩士論文 105521130 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.117.192.53
姓名 吳修銘(Hsiu-Ming Wu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 高功率P型氮化鎵閘極氮化鎵異質場效電晶體動態特性之研究
(Investigation of the Dynamic Characteristics of High Power p-GaN Gate AlGaN/GaN HEMTs)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 現今商用增強型(E-mode)高功率氮化鎵異質場效電晶體中,p型氮化鎵閘極是常用的閘極結構之一,此閘極對元件開關時的動態特性影響以及與可靠度的關聯性是必須要了解的重要研究課題。 本論文之研究內容是針對p型氮化鎵閘極高電子遷移率電晶體,測量元件在施加閘極應力過程與之後的特性,並分析其動態特性與電荷陷捕行為之關聯。
過去的文獻報導,氮化鎵高電子遷移率電晶體之閘極經過導通偏壓(on state)後,因載子陷捕效應,會造成元件發生臨界電壓偏移或是動態電阻上升等問題。本研究經由分析臨界電壓偏移在受閘極應力後隨著時間回復的行為,判斷這是由兩種載子遷移機制所導致。第一種為電子陷捕機制,其恢復時間常數較短;而另一種為電洞陷捕機制,其恢復時間常數較長。除了臨限電壓偏移的觀察以外,元件在高閘極偏壓(7V)後切換至關閉狀態時,汲極關閉電流會隨著閘極應力的時間而增加,這可能是有陷補電洞而誘導出更多通道電子所導致。根據電流暫態變化所萃取之活化能以及能帶模擬的結果推估,陷捕電子的陷補能階位置約莫在氮化鋁鎵位障層導電帶下方0.45 eV的位置,而陷捕電洞的陷捕能階約在p型氮化鎵或者氮化鋁鎵位障層價電帶上方0.54 eV的位置。
摘要(英) Normally off p-GaN gate AlGaN/GaN HEMTs have gained increasing popularity in power switching applications since their commercial availability. However, device reliability and stability reflected in dynamic characteristics are still of great concern. This work is aimed at analyzing the dynamic characteristics and charge trapping behavior of this p-GaN gate AlGaN/GaN HEMTs under the gate stress.
The effects of on-state stresses on the dynamic behaviours of devices have been explored to correlate the device characteristics and the trapping behavior in the device. A significant change in Vth due to different on-state gate stresses is observed. ∆Vth transient analysis reveals two different mechanisms responsible for the change of Vth. On-state stress below 7V causes positive ∆Vth, indicating electron trapping with a shorter recovery time constant and hole trapping mechanism with a longer recovery time constant as observed by the negative shift in Vth after a 7V on-state stress. In addition to the change in Vth, the off-state Id increases with the on-state stress time at 7V. This is attributed to the presence of trapped holes, which induce excess electrons in the channel to maintain charge neutrality and hence the off state drain current. According to the activation energy obtained by the drain current transient measurements, an apparent electron trap energy level of 0.45 eV below the AlGaN barrier conduction band and a hole trap energy level of about 0.54 eV above the p-GaN or AlGaN valence band are estimated.
關鍵字(中) ★ 氮化鎵
★ 動態特性
★ 電晶體
關鍵字(英) ★ GaN
★ Dynamic Characteristics
★ HEMTs
論文目次 論文摘要.................................................i
Abstract...............................................ii
誌謝..................................................iii
目錄...................................................iv
圖目錄.................................................vi
表目錄.................................................ix
第一章 緒論..............................................1
1.1 前言............................................1
1.2 氮化鎵材料特性...................................3
1.2.1 矽、碳化矽、氮化鎵特性比較........................3
1.2.2 氮化鎵材料之極化效應..............................4
1.3 商用高功率氮化鎵元件發展及遇到的瓶頸...............7
1.4 論文架構........................................13
第二章 E-mode元件高正閘極偏壓對元件穩定性之研究...........14
2.1 經不同閘極偏壓應力後之動態特性談討................14
2.2 閘極偏壓後對於元件開關特性之影響..................19
2.3 以閘極電容觀察電荷陷補效應.......................24
2.4 本章結論........................................27
第三章 高正閘極偏壓誘發缺陷效應之物理模型.................28
3.1 電子陷補/電洞陷補效應之缺陷能階萃取...............28
3.2 閘極下方的相關陷補能階探討.......................33
3.3 如何消除電洞累積效應.............................35
3.4 本章總結........................................37
第四章 結論.............................................38
參考文獻................................................39
參考文獻 [1] B. J. Baliga, "Power semiconductor device figure of merit for high-frequency applications," IEEE Electron Device Letters, vol. 10, pp. 455-457, 1989.
[2] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, L. F. Eastman, R. Dimitrov, L. Wittmer, M. Stutzmann, W. Rieger, and J. Hilsenbeck., "Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures," Journal of Applied Physics, vol. 85, pp. 3222-3233, 1999.
[3] K. J. Chen, O. Haberlen, A. Lidow, C. l. Tsai, T. Ueda, Y. Uemoto, and Y.Wu., "GaN-on-Si Power Technology: Devices and Applications," IEEE Transactions on Electron Devices, vol. 64, pp. 779-795, 2017.
[4] T. Oka and T. Nozawa, "AlGaN/GaN Recessed MIS-Gate HFET With High-Threshold-Voltage Normally-Off Operation for Power Electronics Applications," IEEE Electron Device Letters, vol. 29, pp. 668-670, 2008.
[5] C. Yong, Z. Yugang, K. J. Chen, and K. M. Lau, "High-performance enhancement-mode AlGaN/GaN HEMTs using fluoride-based plasma treatment," IEEE Electron Device Letters, vol. 26, pp. 435-437, 2005.
[6] Y. Uemoto, M. Hikita, H. Ueno, H. Matsuo, H. Ishida, M. Yanagihara, T.Ueda,T.Tanaka,D.Ueda, "Gate Injection Transistor (GIT)—A Normally-Off AlGaN/GaN Power Transistor Using Conductivity Modulation," IEEE Transactions on Electron Devices, vol. 54, pp. 3393-3399, 2007.
[7] X. Huang, Z. Liu, Q. Li, and F. C. Lee, "Evaluation and application of 600V GaN HEMT in cascode structure," Applied Power Electronics Conference and Exposition (APEC), pp. 1279-1286, 2013.
[8] M. Tapajna, O. Hilt, E. Bahat-Treidel, J. Wurfl, and J. Kuzmik, "Gate Reliability Investigation in Normally-Off p-Type-GaN Cap/AlGaN/GaN HEMTs Under Forward Bias Stress," IEEE Electron Device Letters, vol. 37, pp. 385-388, 2016.
[9] G. Meneghesso, M. Meneghini, I. Rossetto, E. Canato, J. Bartholomeus, C. De Santi, N. Trivellin, and E. Zanoni., "GaN HEMTs with p-GaN gate: field- and time-dependent degradation," Proc. SPIE, Gallium Nitride Materials and Devices XII(2017), 1010419
[10] A. N. Tallarico, S. Stoffels, P. Magnone, N. Posthuma, E. Sangiorgi, S. Decoutere, and C.Fiegna, "Investigation of the p-GaN Gate Breakdown in Forward-Biased GaN-Based Power HEMTs," IEEE Electron Device Letters, vol. 38, pp. 99-102, 2017.
[11] Y. Shi, Q. Zhou, Q. Cheng, P. Wei, L. Zhu, D. Wei, A. Zhang, Wanjun Chen, and Bo Zhang, "Bidirectional threshold voltage shift and gate leakage in 650 V p-GaN AlGaN/GaN HEMTs: The role of electron-trapping and hole-injection, Proc. 30th ISPSD, pp. 96-99, 2018.
[12] X. Tang, B. Li, H. A. Moghadam, P. Tanner, J. Han, and S. Dimitrijev, "Mechanism of Threshold Voltage Shift in p-GaN Gate AlGaN/GaN Transistors," IEEE Electron Device Letters, vol. 39, pp. 1145-1148, 2018.
[13] M. J. Anand, G. I. Ng, S. Arulkumaran, B. Syamal, and X. Zhou, "Distribution of trap energy level in AlGaN/GaN high-electron-mobility transistors on Si under ON-state stress," Applied Physics Express, vol. 8, p. 104101, 2015.
[14] F. Calle, E. Monroy, F. J. Sánchez, E. Muñoz, B. Beaumont, S. Haffouz, M. Leroux and Pierre, "Analysis of the Visible and UV Electroluminescence in Homojunction GaN LED"s," MRS Internet Journal of Nitride Semiconductor Research, vol. 3, pp.e24 ,1998.
[15] S. Stoffels, S. Lenci, B. Bakeroot, R. Venegas, G. Groeseneken, and S. Decoutere., "Current transient spectroscopy for trapping analysis on Au-free AlGaN/GaN Schottky barrier diode," Applied Physics Letters, vol. 106, p. 083502, 2015.
[16] Z. Zhang, A. R. Arehart, E. C. H. Kyle, J. Chen, E. X. Zhang, D. M. Fleetwood, R. D. Schrimpf, J. S. Speck, and S. A. Ringel, "Proton irradiation effects on deep level states in Mg-doped p-type GaN grown by ammonia-based molecular beam epitaxy," Applied Physics Letters, vol. 106, p. 022104, 2015.
[17] T. Narita , Y. Tokuda, T. Kogiso, K. Tomita, and T. Kachi.,"The trap states in lightly Mg-doped GaN grown by MOVPE on a freestanding GaN substrate," Journal of Applied Physics, vol. 123, p. 161405, 2018.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2018-11-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明