參考文獻 |
[1] C. Mathas. ADAS takes greater control in 2015. Available: http://www.edn.com/design/automotive/4437761/ADAS-takes-greater-control-in-2015
[2] Renesas electronics, Trends in Automotive Safety. Available: https://www.renesas.com/
[3] Yoshikazu Takeda et al. "Electron mobility and energy gap of In0.53Ga0.47As on InP substrate." Journal of Applied Physics, vol. 47, pp 5405, August, 1976.
[4] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice-Hall, 2001
[5] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[6] T. Hakamata. Photomultiplier Tubes Basics and Application. 3rd, Hamamatsu Photonics K.K., 2006.
[7] W. Hallwachs. "Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper." Annalen der Physik und Chemie, vol. 269, pp. 301-312, 1888.
[8] Wikipedia, Wilhelm Hallwachs. Available: https://en.wikipedia.org/wiki/Wilhelm_Hallwachs
[9] H. Bruining, Physics and Application of Secondary Electron Emission. 2nd edition, 1954.
[10] H. Iams and B. Salzberg. "The Secondary Emission Phototube." Proceedings of the IRE, vol. 23, pp. 55-64, 1935.
[11] V. K. Zworykin, G. A. Morton, and L. Malter. "The Secondary Emission Multiplier-A New Electronic Device." Proceedings of the IRE, vol. 24, pp. 351-375, 1936.
[12] V. K. Zworykin and J. A. Rajchman. "The Electrostatic Electron Multiplier." Proceedings of the IRE, vol. 27, pp. 558-566, 1939.
[13] Hektor Meier, The Avalanche Photodiode Blog Part 1: Avalanche Multiplication. Available: http://www.albisopto.com/avalanche-photodiode-basics/
[14] J. P. R. David and C. H. Tan. "Material Considerations for Avalanche Photodiodes." IEEE J. Sel. Top. Quant, vol. 14, pp. 998–1009, 2008.
[15] H. Ando et al. "Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 mm." IEEE J. Quantum. Electron, vol.QE-14, no. 11, pp. 804–809, Nov. 1978.
[16] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices, 3rd. Wiley, 2007.
[17] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. "Band parameters for III–V compound semiconductors and their alloys." JOURNAL OF APPLIED PHYSICS, vol. 89, pp.5815, No. 11, JUNE 2001.
[18] E. Zielinski et al. "Excitonic transitions and exciton damping processes in InGaAs/InP." J. Appl. Phys, vol. 59, pp. 2196, 1986.
[19] A. Lacaita et al. "Single-photon detection beyond 1 microm: performance of commercially available InGaAs/lnP detectors." Appl Opt, vol. 35, pp. 2986-96, Jun 1996.
[20] A. Goetzberger et al. "Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions." Journal of Applied Physics, vol. 34, No. 6, pp. 1591-1600, 1963.
[21] K. Nishida, K. Taguchi, and Y. Matsumoto. "InGaAsP heterostructure avalanche photodiodes with high avalanche gain." Applied Physics Letters, vol. 35, pp. 251-253, 1979.
[22] J. C. Campbell et al. "High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions." Electronics Letters, vol. 19, pp. 818, 1983.
[23] D. Stucki et al. "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs." Journal of Modern Optics, vol. 48, pp. 1967-1981, 2001.
[24] S. Pellegrini et al. "Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector." IEEE Journal of Quantum Electronics, vol. 42, pp. 397-403, 2006.
[25] X. G. Zheng et al. "A 12 × 12 In0.53Ga0.47As–In0.52Al0.48As Avalanche Photodiode Array." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 38, pp. 1536-1540, December, 2002.
[26] G. Karve et al. "Geiger Mode Operation of an In0.53Ga0.47As–In0.52Al0.48As Avalanche Photodiode." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 39, pp. 1281-1286, November, 2003.
[27] Xiaoguang Zheng. "Long-Wavelength, High-Speed Avalanche Photodiodes and APD Arrays." The University of Texas at Austin, PhD Dissertation, December 2004.
[28] M.R. Ravi, Amitava DasGupta and Nandita DasGupta. "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment." Journal of Crystal Growth, vol. 268, pp. 359–363, 2004.
[29] G. Karve et al. "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes." Applied Physics Letters, vol. 86, pp. 063505, 2005.
[30] Gauri Vibhakar Karve. "Avalanche Photodiodes As Single Photon Detectors." The University of Texas at Austin, PhD Dissertation, May 2005.
[31] W. R. Clark , K. Vaccaro, W. D. Waters. "InAlAs-InGaAs based avalanche photodiodes for next generation eye-safe optical receivers." Proc. SPIE , Photonics North 2007, vol. 6796, pp. 6796H, October 2007.
[32] H. S. Kim et al. "Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation." Appl. Phys. Lett, vol. 97, pp. 143512, 2010.
[33] Jack Jia-Sheng Huang et al. "Predictive Reliability Model of 10G/25G Mesa-Type Avalanche Photodiode Degradation." Applied Physics Research, vol. 8, No.3, 2016.
[34] Masahiro Nada et al. "Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability." JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, No. 8, APRIL 15, 2014.
[35] Masahiro Nada et al. "Inverted InAlAs/InGaAs Avalanche Photodiode with Low–High–Low Electric Field Profile." Japanese Journal of Applied Physics, vol. 51, pp. 02BG03-1, 2012.
[36] T. Ishibashi et al. "Uni-Traveling-Carrier Photodiodes." OSA TOPS on Ultrafmt Electronics and Optoelectronics, vol.13, pp.83-87, 1997.
[37] Y. Muramoto and T. Ishibashi. "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency." ELECTRONICS LETTERS, Vol. 39 No. 24, November 2003.
[38] Tadao Ishibashi et al. "Unitraveling-Carrier Photodiodes for Terahertz Applications." IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 20, No. 6, Nov./Dec. 2014.
[39] Andrew R. J. Marshall et al. "Impact Ionization in InAs Electron Avalanche Photodiodes." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 57, No. 10, Oct. 2010.
[40] J. Abautret. "Characterization of midwave infrared InSb avalanche photodiode." Journal of Applied Physics, vol.117, pp. 244502, June 2015.
[41] Anand Singh and Ravinder Pal. "Performance of Hg1−xCdxTe infrared focal plane array at elevated temperature." Semiconductor Science and Technology, vol.32, pp.045011, 2017.
[42] Arnaud Dumas et al. "Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application." Applied Optics, vol. 56, No. 27, Sep. 2017.
[43] Hektor Taavi Jsoeph Meier. "Design, Characterization and Simulation of Avalanche Photodiodes." ETH Zurich, PhD dissertation, 2011.
[44] Kai Zhao et al. "Self-quenching and self-recovering InGaAs/InAlAs single photon avalanche detector." Appl. Phys. Letters. vol. 93, pp. 153504, 2008.
[45] I. Watanabe et al. "Impact ionization rates in (100) Al0.48In0.52As." IEEE Electron Device Lett. vol 11, pp. 437–438, 1990.
[46] J. S. Ng, Member, IEEE et al. "Effect of Impact Ionization in the InGaAs Absorber on Excess Noise of Avalanche Photodiodes." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 41, No. 8, Aug. 2005.
[47] S. Kasap et al. "Lucky drift impact ionization in amorphous semiconductors." J. Appl. Phys. vol. 96, pp.2037, 2004.
[48] R. J. McIntyre. "Multiplication Noise in Uniform Avalanche Diodes." IEEE TWNSACTIOSS OK ELECTRON DEVICES, vol. ED-13, No.1, Jan. 1966.
[49] R. J. McIntyre. "A New Look at Impact Ionization—Part I: A Theory of Gain, Noise, Breakdown." IEEE TRANSACTIONS ON ELECTRON DEVICES. vol. 46, No. 8, Aug. 1999.
[50] P. Yuan et al. "A New Look at Impact Ionization—Part II: Gain and Noise in Short Avalanche Photodiodes." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 46, No. 8, Aug. 1999.
[51] George M. Williams et al. "High-speed photon counting with linear-mode APD receivers." Proc. SPIE, Advanced Photon Counting Techniques III, vol. 7320, pp.732012, 2009.
[52] George M. Williams et al. "Multi-Gain-Stage InGaAs Avalanche Photodiode with Enhanced Gain and Reduced Excess Noise." IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, vol.1, No.2, Feb. 2013.
[53] S. L. Miller. "Avalanche Breakdown in Germanium." Phys. Rev, vol. 99, pp.1234, Aug. 1955.
[54] J. Yu et al. "Temperature characterization of separate absorption, grading, charge and multiplication." SPIE, vol.2149, 1994.
[55] N. Duan et al. "High speed and low-noise SACM avalanche photodiodes with an impact-ionization engineered multiplication region." IEEE Photon Technol. Lett. vol. 17, no. 8, pp. 1719–1721, Aug. 2005.
[56] W. R. Clark et al. "A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array." IEEE Photon.Technol. Lett. vol. 18, No. 1, pp. 19–21, Jan. 2006.
[57] William R. Clark et al. "Determination of Quantum Efficiency in In0.53Ga0.47As-InP-Based APDs." JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, No. 24, pp. 4780-4784, Dec. 2014.
[58] David A Humphreys. "Measurement of Absorption Coefficients of Ga0.47In0.53As Over the Wavelength Range 1.0–1.7 μm." Electronics Letters, vol. 21, No.25, 1985.
[59] L . Pavesi and F. Piazza. "Temperature dependence of the InP band gap from a photolurninescence study." Phys. Rev. B, vol. 44, No. 16, pp.9052-9055, Oct. 1991.
[60] Lionel Juen Jin Tan, Member, IEEE et al. "Temperature Dependence of Avalanche Breakdown in InP and InAlAs." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 46, No. 8, pp. 1153-1157, Aug. 2010.
[61] P. Kleinow et al. "Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes." Infrared Physics & Technology, vol. 71, pp. 298–302, 2015.
[62] Y. S. Yong. "A convenient band-gap interpolation technique and an improved band line-up model for InGaAlAs on InP." Applied Physics B vol. 99, No. 3, pp. 477–486, May 2010.
[63] Ying-Jie Ma et al. "Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors." Opt. Express vol. 23, pp. 19278-19287, 2015.
[64] C. L. F. Ma et al. "Modelling of Breakdown Voltage and Its Temperature Dependence in SAGCM InP/InGaAs Avalanche Photodiodes." IEEE International Electron Devices Meeting, pp583-586, 1994.
[65] 李書誠,「單光子崩潰二極體之光子偵測特性」,國立交通大學,碩士論文,民國102年
[66] 呂秉耕,「單光子崩潰二極體光計數與暗計數之時間特性」,國立交通大學,碩士論文,民國103年
[67] 嚴浩天,「砷化銦鎵光崩潰二極體於單光子偵測器之應用」,國立交通大學,碩士論文,民國96年
[68] K. Sugihara, E. Yagyu, and Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode." Journal of Applied Physics, vol. 99, pp. 124502, 2006.
[69] R. N. Hall. "Electron-Hole Recombination in Germanium." Physical Review, vol. 87, pp. 387-387, 1952.
[70] W. Shockley and W. T. Read. "Statistics of the Recombinations of Holes and Electrons." Physical Review, vol. 87, pp. 835-842, 1952.
[71] J. P. Donnelly. "Design Considerations for 1.06-μm InGaAsP–InP Geiger-Mode Avalanche Photodiodes." IEEE Journal of Quantum Electronics, vol. 42, pp. 797-809, 2006.
[72] Yingjie Ma et al. "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." Opt. Express, vol. 24, pp. 7823-7834, 2016.
[73] Vishnu Gopal. "A general relation between zero-bias resistance–area product and perimeter-to-area ratio of the diodes in variable-area diode test structures." Semicond. Sci. Technol, vol. 11, pp. 1070-1076, 1996.
[74] E. Plis et al. "Lateral diffusion of minority carriers in n Bn based type-II InAs/GaSb strained layer superlattice detectors." Applied Physics Letters, vol. 93, pp. 123507, 2008.
[75] J Bajaj et al. "Spatially resolved characterization of HgCdTe materials and devices by I scanning laser microscopy." Semicond. Sci. Technoi., vol. 8, pp. 872-887, 1993.
[76] 陳冠宇,「砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析」,國立中央大學,碩士論文,民國106年
[77] N. Calandri. "Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes." IEEE Journal of Quantum Electronics vol. 52, pp. 1-7, 2016.
[78] G S Buller and R J Collins. "Single-photon generation and detection." Meas. Sci. Technol. vol 21, Issue 1, article id. 012002, 28 pp., 2010.
[79] Sergio Cova. “Sensors, Signals and Noise” available: http://home.deib.polimi.it/cova/elet/lezioni/SSN09f_Photodetectors-PD6.pdf
[80] A.G. Baca et al. "A survey of ohmic contacts to III-V compound semiconductors." Thin Solid Films, vol. 308–309, pp. 599–606, 1997.
[81] Wikipedia, Work function, available: https://en.wikipedia.org/wiki/Work_function
[82] M. Tong et al. "Selective Wet Etching Characteristics of Lattice-Matched InGaAs/InAIAs/InP Heterostructure field-effect transistors." J. Electrochem. Soc. vol. 139, No. 10, pp. L91-L93, Oct. 1992.
[83] A.R. Clawson. "Guide to references on III-V semiconductor chemical etching." Materials Science and Engineering, vol. 31, pp. 1-438, 2001.
[84] Shiyu Xie. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes." The University of Sheffield, PhD dissertation, March 2012.
[85] Kazumi Wada and S. W. Pang, Defects in Optoelectronic Materials, 1st Edition, CRC Press, 2001
[86] M. R. Ravi et al. "Effect of Sulfur Passivation and Polyimide Capping on InGaAs–InP PIN Photodetectors." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 50, No.2, pp. 532-534, Feb. 2003. |