博碩士論文 105521025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:3.145.40.121
姓名 張世承(Shih-Cheng Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 砷化銦鎵/砷化銦鋁單光子崩潰二極體的設計與特性探討
(Design and Characteristics of InGaAs/InAlAs Single-photon Avalanche Diodes)
相關論文
★ 應用自差分電路對具有不同擊穿電壓之多層累增層的砷化銦鎵/砷化銦鋁之單光子雪崩二極體性能影響★ 砷化銦鎵/砷化鋁銦單光子崩潰二極體陣列 之光學串擾模擬
★ 改變電荷層摻雜濃度之砷化銦鎵/砷化銦鋁單光子累增二極體的特性探討★ 具有分佈式布拉格反射結構的砷化銦鎵/砷化銦鋁單光子崩潰二極體的特性分析
★ 在砷化銦鎵 /砷化鋁銦單光子崩潰二極體中崩潰閃光引致光學串擾之探討★ 改善載子傳輸之砷化銦鎵/砷化銦鋁平台式單光子崩潰二極體的設計與其特性
★ 砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析★ 砷化銦鎵/砷化銦鋁單光子崩潰二極體 元件製作及適當電荷層濃度模擬分析
★ 應用於單光子雪崩二極體之氮化鉭薄膜電阻器的特性探討★ 砷化銦鎵/磷化銦單光子崩潰二極體暗與光特性分析
★ 砷化銦鎵/磷化銦單光子崩潰二極體正弦波 閘控模式之暗與光特性分析★ 砷化銦鎵/砷化銦鋁平台式雙累增層單光子崩潰二極體的設計與其特性
★ 考慮後段製程連線及佈局優化之積層型三維靜態隨機存取記憶體★ 鐵電場效電晶體記憶體考慮金屬功函數變異度之分析
★ 蝕刻深度對平台式雙累增層砷化銦鎵/砷化銦鋁單光子崩潰二極體之影響★ 應用於非揮發性鐵電靜態隨機存取記憶體之變異容忍性召回操作
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單光子雪崩崩潰光二極體 (Single-photon Avalanche Diode, SPAD) 是利用一光子吸收產生載子觸發衝擊游離的機制來偵測低強度的光,它在自動駕駛車的光達 (Light Detection And Ranging, LiDAR) 系統、三維影像 (3D imaging) 、光纖通訊 (Fiber-optic communication) 等近紅外光 (Near-Infrared) 偵測的領域皆有應用。砷化銦鎵/砷化銦鋁 (In0.47Ga0.53As/In0.48Al0.52As) 單光子崩潰二極體分別以砷化銦鎵作為吸收層偵測波長 1550 奈米的光,而砷化銦鋁作為累増層使電子加速並達到衝擊游離 (impact ionization) ,與較早開始研究的磷化銦 (InP) 來比較,砷化銦鋁有著以下潛力,以崩潰電壓隨溫度變化來說,擁有相同厚度的砷化銦鋁累増層的元件對溫度比較不靈敏,所以可操作溫度比較彈性;還有因為砷化銦鋁有較高雪崩崩潰機率 (avalanche breakdown probability) ,所以在相同暗計數率 (dark count rate) 下,光偵測效率 (photo detection efficiency) 會比較高,以上兩點使砷化銦鋁成為砷化銦鎵單光子崩潰二極體中累増層材料的另一選擇。
本研究中設計與製作正面收光且分離吸收、電荷、累增層 (separate absorption, charge and multiplication, SACM) 的平台式 (mesa type) 雪崩崩潰光二極體 (avalanche photodiode, APD) ,嘗試優化電荷層中的摻雜濃度來達到想要的電場分布、適當的崩潰電壓和擊穿電壓,使累増層的電場大於雪崩閥值且同時吸收層的電場小於雪崩閥值,製程上有在沉積保護層前使用硫化銨 ((NH4)2S) 對裸露的側壁硫化處理來減少表面漏電流。選用適當的保護層與金屬層厚度,製作出SPAD元件並量測其電流-電壓特性,在室溫下崩潰電壓約為 47 伏,隨著溫度下降,崩潰電壓的溫度係數在200K以下為 52 mV/K 和 200K以上為 16 mV/K,另一顆為 60 和 21 mV/K,由活化能大小分析其漏電流來源;為降低二次崩潰的影響,我們以閘控模式電路 (gated mode circuit) 操作,先紀錄崩潰訊號之波形,再進一步降溫至 77 K量測暗計數率與光計數率,並探討造成暗計數隨溫度變化趨勢的主要因素,以及討論元件光偵測效率低的原因。
摘要(英) Single-photon Avalanche Diode (SPAD) is used to detect low power light via absorbing one photon and generating carriers to induce impact ionization process. SPAD attracts great interest in the field of near-infrared detection such as light detection and ranging (LiDAR), 3D imaging, fiber-optic communication, etc. In0.47Ga0.53As/In0.48Al0.52As SPAD, consisting of InGaAs absorption layer for the detection of near infrared light and InAlAs multiplication layer for achieving impact ionization process, have several advantages in comparison with the SPAD using a InP multiplication layer. The breakdown voltage of SPAD with InAlAs multiplication layer is more stable to the temperature than that of SPAD with InP multiplication layer. InAlAs also has higher avalanche breakdown probability than InP, hence higher photon detection efficiency is expected. Therefore, InAlAs becomes an alternative candidate for next generation of InGaAs SPAD.
In this work, we design and fabricate top-illuminated and mesa type SACM avalanche photodiodes. With the aid of technology computer-aided design (TCAD) methods, we optimize the doping concentration of charge layers for gaining high enough electric field in the multiplication layer and low enough electric field in the absorption layer. We apply sulfur treatment on the exposed sidewall by using (NH4)2S before depositing passivation layer to reduce surface leakage current. With appropriate thickness of passivation and bonding pad, we have successfully carried out SPAD devices. The basic current-voltage characteristics of SPAD have been measured and analyzed. The breakdown voltage is around 47 V at room temperature and the temperature coefficient of breakdown voltage is 52 mV/K below 200K and 16 mV/K above 200K, 60 and 21 mV/K for another one. We analyzed the origin of dark current via different activation energy. For reducing the afterpulsing effect, we use gated mode operation. The avalanche signal is acquired under dark condition. Then the temperature dependences of dark count rate and photon count rate are measured for temperatures down to 77K. Finally, we discuss the main factors affecting the dark count rate and the photon detection efficiency of our devices.
關鍵字(中) ★ 砷化銦鎵/砷化鋁鎵
★ 單光子崩潰二極體
關鍵字(英) ★ InGaAs/InAlAs
★ single-photon avalanche diodes
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xiii
第一章 緒論 1
1-1 前言 1
1-1-1 光電倍增管 4
1-1-2 偵測波段與材料 6
1-1-3 光崩潰二極體 8
1-2 研究動機與論文架構 11
第二章 單光子崩潰二極體 12
2-1 元件物理 12
2-1-1 I-V 特性與操作模式 12
2-1-2 崩潰機制 15
2-1-3 累增增益 20
2-1-4 APD 結構演化與電場分布 22
2-2 SPAD操作與電路 25
2-2-1 自由運作電路 (Free-running mode circuit) 25
2-2-2 閘控模式 (Gated mode) 27
2-3 元件特性參數 28
2-3-1 暗計數來源 28
2-3-2 單光子偵測效率 33
第三章 量測系統架構 36
3-1 電流-電壓量測 37
3-2 閘控模式量測 37
3-2-1計數率計算式 40
第四章 結構設計與元件製作 41
4-1 元件結構設計 41
4-1-1 結構設計 41
4-2 光罩設計與外型 50
4-3 元件製程 51
4-3-1 晶圓切割與清洗 51
4-3-2 曝光顯影 51
4-3-3 濕蝕刻和乾蝕刻 52
4-3-4 側蝕和電漿損傷 53
4-3-5 硫化處理與側壁保護 54
4-3-6 陰陽電極金屬沉積 55
4-3-7 打線墊沉積 56
第五章 量測結果與討論 58
5-1 電流-電壓與暗計數量測 58
5-1-1 室溫電流-電壓量測 58
5-1-2 崩潰訊號 61
5-2 變溫電流-電壓與計數量測 64
5-2-1 變溫電流-電壓量測 64
5-2-2 變溫暗計數量測 69
5-2-3 變溫光計數量測 74
第六章 結論與未來展望 76
參考文獻 77
參考文獻 [1] C. Mathas. ADAS takes greater control in 2015. Available: http://www.edn.com/design/automotive/4437761/ADAS-takes-greater-control-in-2015
[2] Renesas electronics, Trends in Automotive Safety. Available: https://www.renesas.com/
[3] Yoshikazu Takeda et al. "Electron mobility and energy gap of In0.53Ga0.47As on InP substrate." Journal of Applied Physics, vol. 47, pp 5405, August, 1976.
[4] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, Prentice-Hall, 2001
[5] Xiao Meng. "InGaAs/InAlAs single photon avalanche diodes at 1550 nm and X-ray detectors using III-V semiconductor materials." The University of Sheffield, PhD dissertation, August 2015.
[6] T. Hakamata. Photomultiplier Tubes Basics and Application. 3rd, Hamamatsu Photonics K.K., 2006.
[7] W. Hallwachs. "Ueber den Einfluss des Lichtes auf electrostatisch geladene Körper." Annalen der Physik und Chemie, vol. 269, pp. 301-312, 1888.
[8] Wikipedia, Wilhelm Hallwachs. Available: https://en.wikipedia.org/wiki/Wilhelm_Hallwachs
[9] H. Bruining, Physics and Application of Secondary Electron Emission. 2nd edition, 1954.
[10] H. Iams and B. Salzberg. "The Secondary Emission Phototube." Proceedings of the IRE, vol. 23, pp. 55-64, 1935.
[11] V. K. Zworykin, G. A. Morton, and L. Malter. "The Secondary Emission Multiplier-A New Electronic Device." Proceedings of the IRE, vol. 24, pp. 351-375, 1936.
[12] V. K. Zworykin and J. A. Rajchman. "The Electrostatic Electron Multiplier." Proceedings of the IRE, vol. 27, pp. 558-566, 1939.
[13] Hektor Meier, The Avalanche Photodiode Blog Part 1: Avalanche Multiplication. Available: http://www.albisopto.com/avalanche-photodiode-basics/
[14] J. P. R. David and C. H. Tan. "Material Considerations for Avalanche Photodiodes." IEEE J. Sel. Top. Quant, vol. 14, pp. 998–1009, 2008.
[15] H. Ando et al. "Characteristics of germanium avalanche photodiodes in the wavelength region of 1–1.6 mm." IEEE J. Quantum. Electron, vol.QE-14, no. 11, pp. 804–809, Nov. 1978.
[16] S. M. Sze and K. K. Ng. Physics of Semiconductor Devices, 3rd. Wiley, 2007.
[17] I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan. "Band parameters for III–V compound semiconductors and their alloys." JOURNAL OF APPLIED PHYSICS, vol. 89, pp.5815, No. 11, JUNE 2001.
[18] E. Zielinski et al. "Excitonic transitions and exciton damping processes in InGaAs/InP." J. Appl. Phys, vol. 59, pp. 2196, 1986.
[19] A. Lacaita et al. "Single-photon detection beyond 1 microm: performance of commercially available InGaAs/lnP detectors." Appl Opt, vol. 35, pp. 2986-96, Jun 1996.
[20] A. Goetzberger et al. "Avalanche Effects in Silicon p—n Junctions. II. Structurally Perfect Junctions." Journal of Applied Physics, vol. 34, No. 6, pp. 1591-1600, 1963.
[21] K. Nishida, K. Taguchi, and Y. Matsumoto. "InGaAsP heterostructure avalanche photodiodes with high avalanche gain." Applied Physics Letters, vol. 35, pp. 251-253, 1979.
[22] J. C. Campbell et al. "High-performance avalanche photodiode with separate absorption ‘grading’ and multiplication regions." Electronics Letters, vol. 19, pp. 818, 1983.
[23] D. Stucki et al. "Photon counting for quantum key distribution with Peltier cooled InGaAs/InP APDs." Journal of Modern Optics, vol. 48, pp. 1967-1981, 2001.
[24] S. Pellegrini et al. "Design and Performance of an InGaAs–InP Single-Photon Avalanche Diode Detector." IEEE Journal of Quantum Electronics, vol. 42, pp. 397-403, 2006.
[25] X. G. Zheng et al. "A 12 × 12 In0.53Ga0.47As–In0.52Al0.48As Avalanche Photodiode Array." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 38, pp. 1536-1540, December, 2002.
[26] G. Karve et al. "Geiger Mode Operation of an In0.53Ga0.47As–In0.52Al0.48As Avalanche Photodiode." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 39, pp. 1281-1286, November, 2003.
[27] Xiaoguang Zheng. "Long-Wavelength, High-Speed Avalanche Photodiodes and APD Arrays." The University of Texas at Austin, PhD Dissertation, December 2004.
[28] M.R. Ravi, Amitava DasGupta and Nandita DasGupta. "Silicon nitride and polyimide capping layers on InGaAs/InP PIN photodetector after sulfur treatment." Journal of Crystal Growth, vol. 268, pp. 359–363, 2004.
[29] G. Karve et al. "Origin of dark counts in In0.53Ga0.47As/In0.52Al0.48As avalanche photodiodes." Applied Physics Letters, vol. 86, pp. 063505, 2005.
[30] Gauri Vibhakar Karve. "Avalanche Photodiodes As Single Photon Detectors." The University of Texas at Austin, PhD Dissertation, May 2005.
[31] W. R. Clark , K. Vaccaro, W. D. Waters. "InAlAs-InGaAs based avalanche photodiodes for next generation eye-safe optical receivers." Proc. SPIE , Photonics North 2007, vol. 6796, pp. 6796H, October 2007.
[32] H. S. Kim et al. "Reduction of surface leakage current in InAs/GaSb strained layer long wavelength superlattice detectors using SU-8 passivation." Appl. Phys. Lett, vol. 97, pp. 143512, 2010.
[33] Jack Jia-Sheng Huang et al. "Predictive Reliability Model of 10G/25G Mesa-Type Avalanche Photodiode Degradation." Applied Physics Research, vol. 8, No.3, 2016.
[34] Masahiro Nada et al. "Triple-mesa Avalanche Photodiode With Inverted P-Down Structure for Reliability and Stability." JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, No. 8, APRIL 15, 2014.
[35] Masahiro Nada et al. "Inverted InAlAs/InGaAs Avalanche Photodiode with Low–High–Low Electric Field Profile." Japanese Journal of Applied Physics, vol. 51, pp. 02BG03-1, 2012.
[36] T. Ishibashi et al. "Uni-Traveling-Carrier Photodiodes." OSA TOPS on Ultrafmt Electronics and Optoelectronics, vol.13, pp.83-87, 1997.
[37] Y. Muramoto and T. Ishibashi. "InP/InGaAs pin photodiode structure maximising bandwidth and efficiency." ELECTRONICS LETTERS, Vol. 39 No. 24, November 2003.
[38] Tadao Ishibashi et al. "Unitraveling-Carrier Photodiodes for Terahertz Applications." IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 20, No. 6, Nov./Dec. 2014.
[39] Andrew R. J. Marshall et al. "Impact Ionization in InAs Electron Avalanche Photodiodes." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 57, No. 10, Oct. 2010.
[40] J. Abautret. "Characterization of midwave infrared InSb avalanche photodiode." Journal of Applied Physics, vol.117, pp. 244502, June 2015.
[41] Anand Singh and Ravinder Pal. "Performance of Hg1−xCdxTe infrared focal plane array at elevated temperature." Semiconductor Science and Technology, vol.32, pp.045011, 2017.
[42] Arnaud Dumas et al. "Evaluation of a HgCdTe e-APD based detector for 2 μm CO2 DIAL application." Applied Optics, vol. 56, No. 27, Sep. 2017.
[43] Hektor Taavi Jsoeph Meier. "Design, Characterization and Simulation of Avalanche Photodiodes." ETH Zurich, PhD dissertation, 2011.
[44] Kai Zhao et al. "Self-quenching and self-recovering InGaAs/InAlAs single photon avalanche detector." Appl. Phys. Letters. vol. 93, pp. 153504, 2008.
[45] I. Watanabe et al. "Impact ionization rates in (100) Al0.48In0.52As." IEEE Electron Device Lett. vol 11, pp. 437–438, 1990.
[46] J. S. Ng, Member, IEEE et al. "Effect of Impact Ionization in the InGaAs Absorber on Excess Noise of Avalanche Photodiodes." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 41, No. 8, Aug. 2005.
[47] S. Kasap et al. "Lucky drift impact ionization in amorphous semiconductors." J. Appl. Phys. vol. 96, pp.2037, 2004.
[48] R. J. McIntyre. "Multiplication Noise in Uniform Avalanche Diodes." IEEE TWNSACTIOSS OK ELECTRON DEVICES, vol. ED-13, No.1, Jan. 1966.
[49] R. J. McIntyre. "A New Look at Impact Ionization—Part I: A Theory of Gain, Noise, Breakdown." IEEE TRANSACTIONS ON ELECTRON DEVICES. vol. 46, No. 8, Aug. 1999.
[50] P. Yuan et al. "A New Look at Impact Ionization—Part II: Gain and Noise in Short Avalanche Photodiodes." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 46, No. 8, Aug. 1999.
[51] George M. Williams et al. "High-speed photon counting with linear-mode APD receivers." Proc. SPIE, Advanced Photon Counting Techniques III, vol. 7320, pp.732012, 2009.
[52] George M. Williams et al. "Multi-Gain-Stage InGaAs Avalanche Photodiode with Enhanced Gain and Reduced Excess Noise." IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, vol.1, No.2, Feb. 2013.
[53] S. L. Miller. "Avalanche Breakdown in Germanium." Phys. Rev, vol. 99, pp.1234, Aug. 1955.
[54] J. Yu et al. "Temperature characterization of separate absorption, grading, charge and multiplication." SPIE, vol.2149, 1994.
[55] N. Duan et al. "High speed and low-noise SACM avalanche photodiodes with an impact-ionization engineered multiplication region." IEEE Photon Technol. Lett. vol. 17, no. 8, pp. 1719–1721, Aug. 2005.
[56] W. R. Clark et al. "A 1 cm × 1 cm In0.53Ga0.47As-In0.52Al0.48As avalanche photodiode array." IEEE Photon.Technol. Lett. vol. 18, No. 1, pp. 19–21, Jan. 2006.
[57] William R. Clark et al. "Determination of Quantum Efficiency in In0.53Ga0.47As-InP-Based APDs." JOURNAL OF LIGHTWAVE TECHNOLOGY, vol. 32, No. 24, pp. 4780-4784, Dec. 2014.
[58] David A Humphreys. "Measurement of Absorption Coefficients of Ga0.47In0.53As Over the Wavelength Range 1.0–1.7 μm." Electronics Letters, vol. 21, No.25, 1985.
[59] L . Pavesi and F. Piazza. "Temperature dependence of the InP band gap from a photolurninescence study." Phys. Rev. B, vol. 44, No. 16, pp.9052-9055, Oct. 1991.
[60] Lionel Juen Jin Tan, Member, IEEE et al. "Temperature Dependence of Avalanche Breakdown in InP and InAlAs." IEEE JOURNAL OF QUANTUM ELECTRONICS, vol. 46, No. 8, pp. 1153-1157, Aug. 2010.
[61] P. Kleinow et al. "Experimental investigation of the charge-layer doping level in InGaAs/InAlAs avalanche photodiodes." Infrared Physics & Technology, vol. 71, pp. 298–302, 2015.
[62] Y. S. Yong. "A convenient band-gap interpolation technique and an improved band line-up model for InGaAlAs on InP." Applied Physics B vol. 99, No. 3, pp. 477–486, May 2010.
[63] Ying-Jie Ma et al. "Tailoring the performances of low operating voltage InAlAs/InGaAs avalanche photodetectors." Opt. Express vol. 23, pp. 19278-19287, 2015.
[64] C. L. F. Ma et al. "Modelling of Breakdown Voltage and Its Temperature Dependence in SAGCM InP/InGaAs Avalanche Photodiodes." IEEE International Electron Devices Meeting, pp583-586, 1994.
[65] 李書誠,「單光子崩潰二極體之光子偵測特性」,國立交通大學,碩士論文,民國102年
[66] 呂秉耕,「單光子崩潰二極體光計數與暗計數之時間特性」,國立交通大學,碩士論文,民國103年
[67] 嚴浩天,「砷化銦鎵光崩潰二極體於單光子偵測器之應用」,國立交通大學,碩士論文,民國96年
[68] K. Sugihara, E. Yagyu, and Y. Tokuda. "Numerical analysis of single photon detection avalanche photodiodes operated in the Geiger mode." Journal of Applied Physics, vol. 99, pp. 124502, 2006.
[69] R. N. Hall. "Electron-Hole Recombination in Germanium." Physical Review, vol. 87, pp. 387-387, 1952.
[70] W. Shockley and W. T. Read. "Statistics of the Recombinations of Holes and Electrons." Physical Review, vol. 87, pp. 835-842, 1952.
[71] J. P. Donnelly. "Design Considerations for 1.06-μm InGaAsP–InP Geiger-Mode Avalanche Photodiodes." IEEE Journal of Quantum Electronics, vol. 42, pp. 797-809, 2006.
[72] Yingjie Ma et al. "Impact of etching on the surface leakage generation in mesa-type InGaAs/InAlAs avalanche photodetectors." Opt. Express, vol. 24, pp. 7823-7834, 2016.
[73] Vishnu Gopal. "A general relation between zero-bias resistance–area product and perimeter-to-area ratio of the diodes in variable-area diode test structures." Semicond. Sci. Technol, vol. 11, pp. 1070-1076, 1996.
[74] E. Plis et al. "Lateral diffusion of minority carriers in n Bn based type-II InAs/GaSb strained layer superlattice detectors." Applied Physics Letters, vol. 93, pp. 123507, 2008.
[75] J Bajaj et al. "Spatially resolved characterization of HgCdTe materials and devices by I scanning laser microscopy." Semicond. Sci. Technoi., vol. 8, pp. 872-887, 1993.
[76] 陳冠宇,「砷化銦鎵/磷化銦單光子雪崩型偵測器暗計數特性分析」,國立中央大學,碩士論文,民國106年
[77] N. Calandri. "Charge Persistence in InGaAs/InP Single-Photon Avalanche Diodes." IEEE Journal of Quantum Electronics vol. 52, pp. 1-7, 2016.
[78] G S Buller and R J Collins. "Single-photon generation and detection." Meas. Sci. Technol. vol 21, Issue 1, article id. 012002, 28 pp., 2010.
[79] Sergio Cova. “Sensors, Signals and Noise” available: http://home.deib.polimi.it/cova/elet/lezioni/SSN09f_Photodetectors-PD6.pdf
[80] A.G. Baca et al. "A survey of ohmic contacts to III-V compound semiconductors." Thin Solid Films, vol. 308–309, pp. 599–606, 1997.
[81] Wikipedia, Work function, available: https://en.wikipedia.org/wiki/Work_function
[82] M. Tong et al. "Selective Wet Etching Characteristics of Lattice-Matched InGaAs/InAIAs/InP Heterostructure field-effect transistors." J. Electrochem. Soc. vol. 139, No. 10, pp. L91-L93, Oct. 1992.
[83] A.R. Clawson. "Guide to references on III-V semiconductor chemical etching." Materials Science and Engineering, vol. 31, pp. 1-438, 2001.
[84] Shiyu Xie. "Design and characterisation of InGaAs high speed photodiodes, InGaAs/InAlAs avalanche photodiodes and novel AlAsSb based avalanche photodiodes." The University of Sheffield, PhD dissertation, March 2012.
[85] Kazumi Wada and S. W. Pang, Defects in Optoelectronic Materials, 1st Edition, CRC Press, 2001
[86] M. R. Ravi et al. "Effect of Sulfur Passivation and Polyimide Capping on InGaAs–InP PIN Photodetectors." IEEE TRANSACTIONS ON ELECTRON DEVICES, vol. 50, No.2, pp. 532-534, Feb. 2003.
指導教授 李依珊(Yi-Shan Lee) 審核日期 2018-11-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明