博碩士論文 105323085 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.219.232.153
姓名 洪承暉(CHENG-HUI HUNG)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 使用微型閥並具備自動平台校正功能之三維生物列印機開發
(Development of Microvalve-based Three-demensional Bioprinter with Automatic Levelling Platform)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 三維生物列印是結合了組織工程與積層製造技術的優勢,來製作生物支架或人工組織器官的製程,解決人體組織或器官移植和修復等問題。其中由於積層製造技術的引入,使製作多孔性且複雜外型輪廓的生物支架更有效率。為了提升工作平台水平度與縮短校正水平時間,本研究將開發一台具有自動水平校正功能的生物列印機,並且採用微型閥噴墨的方式列印材料。擁有快速沉積以及較低的預壓力以防止細胞損傷,並且提升溫度控制能力,提供更好的列印環境來製作生物支架。
本研究所發展之生物列印機系統包括運動控制模組、溫度循環控制模組、微型閥噴墨模組與距離感測模組。其中新設計開發的自動水平校正平台分類在運動控制模組中,擁有三軸之線性馬達作為同步驅動,主要功能除了使用自動校正水平取代人工調校之外,也包含了控制工作平台的升降,並且開發C#環境之人機介面方便人員操作。
由實際使用微型閥噴墨方式列印結果得知該方法為可行,且擁有非接觸式列印的優點,無須考量針頭與列印支架之間的碰撞與材料沾黏的問題。透過列印參數的優化可以提升列印品質,並且針對不同參數所列印之結果做出綜合比較,最後列印高層數支架。
摘要(英) Three-dimensional bioprinting combines the advantages of tissue engineering and additive manufacturing technology to make biological scaffolds or artificial tissue and organs, solving problems such as human tissue or the transplantation and repairing of organ. Among them, due to the introduction of additive manufacturing technology, it is more efficient to make porous and complex contoured biological scaffolds. In order to improve the level of the working platform and shorten the levelling time, this study is going to develop a bio-printer with automatic levelling and the material printed by micro-valve inkjet. In order to prevent cell damage, it possesses rapid deposition and low pre-pressure. In addition, it enhances temperature control ability, provides a better printing environment to manufacture biological scaffolds.
The bio-printer system developed by this study includes motion control module, temperature cycling control module, micro valve inkjet module and distance sensing module. The newly designed automatic leveling platform is classified into motion control module, and has a three-axis linear motor as synchronous drive. In addition to the main function is using automatic leveling as the replacement of manual adjustment, it also contains the control of working platform lifting, and develop the user interface of C# environment to let the operation convenient for user.
It is found that the method is feasible by the actual use of microvalve inkjet printing results, and has the advantages of non-contact printing, no need to consider the collision between needle and scaffold, as well as the problem of material adhesion. The printing quality can be improved by optimizing the printing parameters; furthermore, for comprehensive comparison of the printed results by different parameters is made, and print the high-level scaffold ultimately.
關鍵字(中) ★ 組織工程
★ 組織工程支架
★ 3D生物列印機
★ 微型閥噴墨
★ 自動水平校正
關鍵字(英) ★ Tissue engineering
★ Tissue engineering scaffold
★ 3D Bioprinter
★ Microvalve inkjet
★ Automatic levelling
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 X
第一章 緒論 1
1-1前言 1
1-2文獻回顧 2
1-3研究動機與目的 15
1-4論文架構 16
第二章 研究與理論說明 17
2-1組織工程簡介 17
2-2組織工程用積層製造技術簡介 19
2-3 平台之水平校正演算法 27
2-4組織工程支架材料 30
2-5舊型低溫積層製造系統簡介 31
第三章 系統架構與實驗方法 33
3-1三維生物列印機之各模組簡介 33
3-2 自動水平校正平台機構設計介紹 39
3-3 軟體與硬體設備整合 42
3-4人機介面與自動化水平校正流程 47
3-5列印參數設計 58
3-6使用之材料介紹 60
第四章 實驗結果與討論 61
4-1工作平台水平度分析與比較 61
4-2工作平台溫度分佈分析 66
4-3使用不同參數列印之實驗分析 71
4-4使用最佳參數之支架製作 77
第五章 結論與未來展望 81
5-1結論 81
5-2未來展望 82
參考文獻 83
參考文獻 [1] 財團法人器官捐贈移植登錄中心:各項捐贈者及待移植者基準 衛福部105年2月 15日,取至 https://www.torsc.org.tw/docDetail.jsp?uid=43&pid=12&doc_id=944。
[2] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering” , Journal of Materials Chemistry, Vol. 19, pp.8817-8823, 2009.
[3] G. H. Kim, S. H. Ahn, Y. Y. Kim, Y. S. Cho and W. Chun, “Coaxial Structured
Collagen-alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration”, Journal of Materials Chemistry, Vol. 21, pp.6165-6172, 2011.
[4] S. H. Ahn, H. J. Lee, E. J. Lee and G. H. Kim, “A Direct Cell Printing Supplemented with Low Temperature Processing Method for Obtaining Highly Porous
Three-Dimensional Cell-Laden Scaffolds”, Journal of Materials Chemistry B, Vol. 2, pp. 2773-2782, 2014.
[5] S. H. Ahn, H. J. Lee, L. J. Bonassar and G. H. Kim, “Cells (MC3T3-E1)-Laden Alginate Scaffolds Fabricated by a Modified Solid-Freeform Fabrication Process Supplemented with an Aerosol Spraying”, Journal of Biomacromolecules, Vol. 6, pp. 2997-3003, 2012.
[6] W. Lee, J. C. Debasitis, V. K. Lee, J. H. Lee, K. Fischer, K. Edminster, J. K. Park and S. S. Yoo, “Multi-Layered Culture of Human Skin Fibroblasts and Keratinocytes through
Three-Dimensional Freeform Fabrication”, Journal of Biomaterials, Vol. 2, pp. 1587-1595, 2008.
[7] S. J. Moon, S. K. Hasan, Y. S. Song, F. Xu, H. O. Keles, F. Manzur, S. Mikkilineni, J. W. Hong, J. Nagatomi, E. Haeggstrom, A. Khademhosseini and U. Demirci, “Layer by Layer Three-Dimensional Tissue Epitaxy by Cell-Laden Hydrogel Droplets”, Journal of Tissue Engineering Part C: Methods, Vol. 16, pp. 157-166, 2010.
[8] A. Faulkner-Jones, S. Greenhough, J. A. King, J. Gardner, A. Courtney and W. Shu, “Development of a Valve-based Cell Printer for the Formation of Human Embryonic Stem Cell Spheroid Aggregates”, Journal of Biofabrication , Vol. 5, 2013.
[9] L. Pourchet, A. Thepot, M. Albouy, E. Courtial, A. Boher, L. Blum and C. Marquette, “Human Skin 3D Bioprinting Using Scaffold-Free Approach”, Journal of Advanced Healthcare Materials , Vol. 6, 2017.
[10] F. Liravi and E. Toyserkani, “A Hybrid Additive Manufacturing Method for the Fabrication of Silicone Bio-structures: 3D Printing Otimization and Surface Characterization”, Journal of Materials and Design, Vol. 138, pp.46-61, 2018.
[11] A. Pfister, R. Landers, A. Laib, U. Hübner, R. Schmelzeisen and R. Mülhaupt, “Biofunctional Rapid Prototyping for Tissue-Engineering Applications: 3D Bioplotting versus 3D Printing”, Journal of Polymer Science , Vol. 42, pp. 624-638, 2003.
[12] I. Ozbola, K. Monca and H. Gudapati, “Evaluation of Bioprinter Technologies”, Journal of Advanced Healthcare Materials , Vol. 13, pp. 179-200, 2016.
[13] EnvisionTEC:3D-Bioplotter Developer Series Technical Data , Available at:https://envisiontec.com/3d-printers/3d-bioplotter/developer-series/.
[14] regenHU Biosystem Architects:Datasheet 3D Discovery™ , Available at:https://www.regenhu.com/3d-bio-printers#3ddiscovery.
[15] regenHU Biosystem Architects:Datasheet BioFactory™ , Available at:https://www.regenhu.com/3d-bio-printers#biofactory.
[16] Advanced SOLUTIONS:BioBot Basic Specifications, Available at:https://lifesciences.solutions/biobotbasic/.
[17] Advanced SOLUTIONS:BioAssemblyBot Specifications, Available at:https://lifesciences.solutions/bioassemblybot/.
[18] GeSiM:GESIM BioScaffolder 3.1 , Available at:https://gesim-bioinstruments-microfluidics.com/category/bioscaffolder-en/applications-bioscaffolder-en/.
[19] Regenovo:Regenovo Bio-Printer, Available at:http://regenovo.com/English/index.aspx.
[20] M. Sokolsky-Papkov, K. Agashi, A. Olaye, K. Shakesheff and A. Domb, “Polymer Carriers for Drug Delivery and Tissue Engineering”, Advanced Drug Delivery Reviews, Vol. 59, pp. 187-206, 2007.
[21] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
[22] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
[23] 吳偉任,「組織工程用冷凍式積層製造之固態水支撐開發」,國立中央大學,碩士論文,民國105年。
[24] 楊泓璟,「以冷凍成型積層製造及固態水支撐製程製作水性生物可降解型聚胺酯與殼聚醣支架之實驗與分析」,國立中央大學,碩士論文,民國106年。
[25] 李宣書,淺談組織工程,物理雙月刊,2001。
[26] R. P. Lanza, R. Langer and J. Vacanti, Principles of Tissue Engineering 2nd Edition, Academic Press, 2000.
[27] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp. 307-318, 1996.
[28] C. Abeykoon, P. Martin, A. Kelly and E. Brown, “A Review and Evaluation of Melt Temperature Sensors for Polymer Extrusion”, Sensors and Actuators A: Physical, Vol. 182, pp. 16-27, 2012.
[29] I. Ozbolat and M. Hospodiuk, “Current Advances and Future Perspectives in Extrusion-based Bioprinting”, Journal of Biomaterials, Vol. 76, pp. 321-343, 2016.
[30] H. Le, “Progress and Trends in Ink-jet Printing Technology”, Journal of Imaging Science and Technology, Vol. 42, pp. 49-62, 1998.
[31] W. L. Ng, J. M. Lee, W. Y. Yeong, and M. W. Naing, “Microvalve-based Bioprinting – Process, Bio-inks and Applications”, Journal of Biomaterials Science, Vol. 5, pp. 632-647, 2017.
[32] X. F. Cui and T. Boland, “Human Microvasculature Fabrication Using Thermal Inkjet Printing Technology”, Journal of Biomaterials , Vol. 30, pp. 6221-6227, 2009.
[33] K. Pataky, T. Braschler, A. Negro, P. Renaud, M. Lutolf and J. Brugger, “Microdrop Printing of Hydrogel Bioinks into 3D Tissue-Like Geometries”, Journal of Advanced Materials , Vol. 24, pp. 391-396, 2012.
[34] K. Arcaute, B. Mann and R. Wicker, “Stereolithography of Three-Dimensional Bioactive Poly(Ethylene Glycol) Constructs with Encapsulated Cells”, Annals of Biomedical Engineering, Vol. 34, pp. 1429-1441, 2006.
[35] R. Xiong, Z. Zhang , W. Chai , Y. Huang and D. Chrisey, “Freeform Drop-on-Demand Laser Printing of 3D Alginate and Cellular Constructs”, Journal of Biofabrication, Vol. 7, 045011, 2015.
[36] W. Lee, V. Lee, S. Polio, P. Keegan, J. H. Lee, K. Fischer, J. K. Park and S. S. Yoo, “On-Demand Three-Dimensional Freeform Fabrication of Multi-Layered Hydrogel Scaffold With Fluidic Channels”, Journal of Biotechnology and Bioengineering, Vol. 15, pp. 1178-1186, 2010.
[37] M. Poldervaart, H. Wang, J. V. D. Stok, H. Weinans, S. G. Leeuwenburgh, F. C. Öner,
W. A. Dhert and J. Albals, “Sustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats”, Journal of Plos One, Vol. 8, 2013.
[38] A. Skardal, J. X. Zhang, L. McCoard, S. Oottamasathien and G. Prestwich, “ Dynamically Crosslinked Gold Nanoparticle – Hyaluronan Hydrogels”, Journal of Advanced Materials, Vol. 22, pp. 4736-4740, 2010.
[39] G. Gao, T. Yonezawa, K. Hubbell, G. Dai and X. F. Cui, “ Inkjet-bioprinted Acrylated Peptides and PEG Hydrogel with Human Mesenchymal Stem Cells Promote Robust Bone and Cartilage Formation with Minimal Printhead Clogging”, Journal of Biotechnology, Vol. 10, pp. 1568-1577, 2015.
[40] L. Geng, W. Feng, D. Hutmacher, Y. S. Wang, H. T. Lon and F. H. Fuh, “Direct Writing of Chitosan Scaffolds Using a Robotic System”, Journal of Rapid Prototyping, Vol. 11, pp. 90-97, 2005.
[41] T. Xu, C. Gregory, P. Molnar, X. F. Cui, S. Jalota, S. Bhaduri and T. Boland, “Viability and Electrophysiology of Neural Cell Structures Generated by The Inkjet Printing Method”, Journal of Biomaterials, Vol. 27, pp. 3580-3588, 2006.
[42] K. Pataky, T. Braschler, A. Negro, P. Renaud, M. Lutolf and J. Brugger, “Microdrop Printing of Hydrogel Bioinks into 3D Tissue‐Like Geometries”, Journal of Advanced Materials, Vol. 24, pp. 391-396, 2012.
[43] U. Gurkan, R. Assal, S. Yildiz, Y. Sung, A. Trachtenberg, W. Kuo and U. Demirci, “Engineering Anisotropic Biomimetic Fibrocartilage Microenvironment by Bioprinting Mesenchymal Stem Cells in Nanoliter Gel Droplets”, Journal of Molecular Pharmaceutics, Vol. 11, pp. 2151-5159, 2014.
[44] X. F. Cui, K. Breitenkamp, M. G. Finn, M. Lotz and D. D’Lima, “Direct Human Cartilage Repair Using Three-Dimensional Bioprinting Technology”, Journal of Tissue Engineering: Part A, Vol. 18, pp. 1304-1312, 2012.
[45] N. Schiele, D. Chrisey and D. Corr, “Gelatin-Based Laser Direct-Write Technique for the Precise Spatial Patterning of Cells”, Journal of Tissue Engineering: Part C, Vol. 17, pp. 289-298, 2011.
[46] R. Cauvin, Y. C. Chen, J. W. Lee, P. Soman, P. Zorlutuna, J. Nichol, S. Chen and A.Khademhosseini, “Microfabrication of Complex Porous Tissue Engineering Scaffolds Using 3D Projection Stereolithography”, Journal of Biomaterials, Vol. 33, pp. 3824-3834, 2012.
[47] Q. L. Zhang, J. H. Sun and S. F. He, “Control Strategy of Three-Point Supported Automatic Levelling Platform”, IEEE 12th International Conference on Electronic Measurement & Instruments, 2015.
[48] H. J. Yang and G. Y Li, “Study on Leveling Method and Control Technology of A Vehicle-Borne Platform”, Machinery Design & Manufacture, 2008.
[49] J. G. Zhang, D. G. Huang and C. H. Lu, “Research on Dynamic Model and Control Strategy of Auto-Leveling System for Vehicle-Borne Platform”, IEEE International Conference on Mechatronics and Automation, 2007.
[50] F. O′Brien, “Biomaterials & Scaffolds for Tissue Engineering”, Journal of Materials today Vol. 14, pp. 88-95, 2011.
[51] I. Ozbolat and M. Hospodiuk, “Current Advances and Futureperspectives in Extrusion Based Bioprinting”, Journal of Biomaterials Vol. 76, pp. 321-343, 2016.
[52] 范玉海,「應用於組織工程中以製作生物支架之材料沉積研究」,國立中央大學,碩士論文,民國106年。
[53] H. Lin and S. H. Hsu, “Cell Reprogramming by 3D Bioprinting of Human Fibroblasts in Polyurethane Hydrogel for Fabrication of Neural-like Constructs”, Journal of Acta Biomaterialia, Vol. 70, pp. 57-70, 2018.
[54] 王德昌,傅洪濱,王一兵,人體皮膚組織學彩色圖譜,山東科學技術出版社,1999。
指導教授 廖昭仰(CHAO-YAUG LIAO) 審核日期 2018-10-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明