博碩士論文 105323086 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:13.59.72.254
姓名 陳鈞彥(Jun-Yan Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高溫高壓預混異辛烷層紊流燃燒速度量測及其一般通式含Lewis數之考量
(Measurements of high-temperature, high-pressure iso-octane turbulent burning velocities and their general correlations with the consideration of Lewis number)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對汽油主要成份異辛烷(iC8H18)於近似燃氣輪機條件,量測其球狀火焰之層流和紊流燃燒速度(SL和ST)。實驗條件為當量比(equivalence ratio)1和1.2,其有效Lewis數分別為Le ≈ 1.43 > 1和Le ≈ 0.93 < 1、初始溫度T = 373 K(異辛烷沸騰溫度約99°C)、初始壓力p = 0.5~3 atm,方均根紊流擾動速度u′ = 0 ~ 4.2 m/s。實驗在已建立之高溫高壓雙腔體三維十字型燃燒設備執行,此設備設置一對反向旋轉風扇及空孔板於大水平圓柱之兩端,它可在三維十字型燃燒室中心區域產生近似等向性紊流場。實驗前需將異辛烷燃氣預先汽化,再以分壓比方式將所設定值之汽化異辛烷燃氣分壓與空氣注入十字型燃燒室並混合,以高速紋影法紀錄中央引燃往外傳播球狀火焰,以獲得其火焰半徑之時序資料R(t),來估算其燃燒速度。實驗結果主要含四個部分:(1)整合本實驗室先前不同溫度之量測,含三個不同溫度(T = 358K、373K、423K),來探討溫度效應對於SL和ST之影響,在、p atm下,SL ~ (T/T0)1.3,而ST ¬~ (T/T0)0.07當u′ =1.4 m/s、ST¬ ~ (T/T0)0.64當u′=2.8 m/s和ST ¬~ (T/T0)1.07當u′ = 4.2 m/s,其中 T0 = 298K,顯示增加溫度,SL和ST值均會增加。當u′ =1.4 m/s時,溫度對ST值之增加效應較不明顯,但此效應隨著u′值之增加而顯著地增加。(2)有關壓力效應對於SL和ST之影響,在、p =atm下,SL ~ (p/p0)-0.26,而ST¬ ~ (p/p0)0.15當u′ = 1.4 m/s、ST¬ ~ (p/p0)0.22當u′ = 2.8 m/s和ST¬ ~ (p/p0)0.17當u′ = 4.2 m/s,其中 p0 = 1atm,顯示SL值會隨壓力增加而下降,但ST值會隨壓力增加而上升。後者是因為壓力上升會造成運動黏滯係數(Kinematic viscosity, v)下降,使得紊流雷諾數(ReT,flow = u′ LI /v)上升,這是ST上升的主因,而非傳統上認為壓力上升會使紊焰越不穩定所主導,因為當ReT,flow固定時,ST就像SL一樣,均會隨p上升而下降,其中LI為紊流積分長度尺度。(3)我們發現Le < 1紊流火焰( = 1.2, Le ≈ 0.93),其ST值明顯高於Le > 1紊焰(= 1.0, Le ≈ 1.43),這是在 SL和u′ = 1.4m/s為近乎相等的情況下所得的結果,其原因為Le < 1紊流火焰會受到熱擴散不穩定性之影響而增加ST值。(4)最後,本研究分別探討四個有關S¬T之關係式(未考量Le數):(1) ST,c=0.5/u′ = A(Da)B,其Damköhler number Da = (LI/u′)(SL/L)、下標c ̅為平均傳遞變數、L為層流火焰厚度、A和B為實驗係數;(2) Kobayashi et al.所提出之 ST,c=0.5/SL = A[(u′/SL)(p/p0)]B;(3) Chaudhuri et al.所提出之[(1/SLb)(d/dt)] = A(ReT,flame)B,其中ReT,flame= (u′/SL)(/L)、SLb為未經密度校正之生成物層流燃燒速度;(4) Bradley et al.所提出之ST/u′ = A K B,其Karlovitz number K = 0.157(u′/SL)2(ReT,flow)-0.5。將本實驗所獲得之Le > 1與Le < 1之ST值,代入前述四個ST之關系式,可以發現Le < 1之ST值均會大於Le > 1之ST值,故需作Le之修正,分別為:(1) ST,c=0.5/u′=0.084(DaLe-1)0.5;(2)ST,c=0.5/SL = 2.97[(u′/SL)(p/p0)Le-1]0.32;(3) ST,c=0.5/SL = 0.24(ReT,flameLe-1)0.5;(4)ST,c=0.5/u′ = 0.32(KLe)-0.45,將原本分散之不同Le、T、p、u′值之異辛烷ST資料,經Le數修正後,所有資料均可藕合成一曲線,顯示球狀火焰具有相似性,且四個關係式加入Le之考量後,均可成為一般通式。此研究結果,對高溫高壓預混紊流燃燒相關之應用,如車輛及航空引擎之燃燒研究有所助益。
摘要(英) This study measures high-pressure, high-temperature turbulent burning velocities (ST) of iso-octane/air mixtures (iC8H18 is a major component of gasoline surrogate) relevant to gas turbine conditions. Two equivalence ratios (= 1.0, 1.2) with different Lewis numbers (Le ≈ 1.43, 0.93) are used, and the ranges of experimental conditions are: The initial temperature T = 373K, the initial pressure p = 0.5~3 atm, and the r.m.s. turbulent fluctuation velocity u′ = 0~4.2 m/s. Experiments are conducted in a high-pressure, high-temperature, double-chamber, cruciform fan-stirred premixed turbulent explosion facility, capable of generating a near-isotropic turbulence for conducting combustion experiments at constant T, p, and u′ conditions. Before a run, the iso-octane is injected into a pre-vacuumed heated vessel to make sure that it is fully vaporized. Then we inject the pre-vaporized iso-octane into the cruciform fan-stirred burner by using the partial pressure method, and the pre-vaporized iso-octane and air are well-mixed. A run begins by centrally-igniting the combustible mixture. The radii of spherical expanding flames as a function of time are recorded by high-speed Schilieren imaging to estimate the corresponding burning velocities. The experimental results are mainly consisted of four parts: (1) Together with our previous data, the effect of T (358K, 373K, 423K) on SL and ST is discussed, which show that when  =1.0 at 1 atm, values of SL and ST increase with increasing T, i.e. SL ~ (T/T0)1.3, ST¬ ~ (T/T0)0.07 at u′ = 1.4 m/s, ST ¬~ (T/T0)0.64 at u′ = 2.8 m/s, ST¬ ~ (T/T0)1.07 at u′ = 4.2 m/s, where T0 = 298K. At modest u′ = 1.4 m/s, the incremental effect of T is rather weak, but such effect becomes stronger and stronger as u′ increases. (2) Results show that when  =1.0 at 1atm, SL ~ (p/p0)-0.26but ST¬ ~ (p/p0)0.15 when u′ = 1.4 m/s, ST¬~ (p/p0)0.22 when u′ = 2.8 m/s, ST¬ ~ (p/p0)0.17 when u′ = 4.2 m/s, where p0=1atm. The latter is because when p increases, the kinematic viscosity (v) decreases resulting in a decrease of turbulent flow Reynolds number ReT,flow = u′LI /v, where LI is the turbulent integral length scale. This ReT,flow decrease is the major reason causing the decrease of ST, not the commonly-held view that ST increases with increasing p due to the enhancement of wrinkling flame instability by the decrease of the flame thickness. When ReT,flow is kept constant, ST decreases with increasing p in the same manner as SL, showing the global response of laminar and turbulent flame speeds to pressure. (3) It is found that the effect of Le plays an important role on ST, because Le < 1 flame ( = 1.2, Le ≈ 0.93) have higher values of ST than that of Le > 1 flames ( = 1, Le ≈ 1.43), both at the same SL ≈ 0.4 m/s and u′ = 1.4 m/s. This is because Le < 1 flames experience additional thermodiffusive instability. (4) Finally, this paper applies four correlations to analyze the present ST data: (1) ST,c=0.5/u′ = A(Da)B, where the subscript c is the mean progress variable, Damköhler number Da = (LI/u′)(SL/L), where L is laminar flame thickness, and A and B are experimental coefficients; (2)A correlation of [(1/SLb)(d/dt)] = A(ReT,flame)B proposed by Chaudhuri et al., where SLb is the burned laminar burning velocity, and the turbulent flame Reynolds number ReT,flame = (u′/SL)(/L); (3)A correlation of ST,c=0.5/SL = A[(u′/SL)(p/p0)]B proposed by Kobayashi et al.; (4) A correlation of ST/u′=AKB proposed by Bradley et al., where the Karlovitz number K=0.157(u′/SL)2(ReT,flow)-0.5. In the above four correlations, Le < 1 flame have higher values of ST than Le > 1 flames, suggesting a need for Le modification. The Le modifications we propose are as follows: (1) ST,c=0.5/u′ = 0.084(DaLe-1)0.5; (2) ST,c=0.5/SL = 0.24(ReT,flameLe-1)0.5; (3) ST,c=0.5/SL = 2.97[(u′/SL)(p/p0)Le-1]0.32; (4) ST,c=0.5/u′ = 0.32(KLe)-0.45; all scattering ST data are collapsed onto single curves showing self-similar propagation turbulent of spherical flames regardless of different Le, T, p, u′. These four general correlations with the consideration of Le are important for high-pressure, high-temperature turbulent premixed combustion relevant to auto and aviation engines.
關鍵字(中) ★ 高溫高壓紊流燃燒速度
★ 異辛烷
★ Lewis數
★ 一般通式
★ 自我相似性
關鍵字(英) ★ high-temperature, high-pressure turbulent burning velocities
★ iso-octane
★ Lewis number
★ general correlations
★ self-similarity
論文目次 目錄
摘要 I
Abstract IV
誌謝 VII
圖目錄 XII
表目錄 XV
符號說明 XVI
第一章 前言 1
1.1研究動機 1
1.2探討問題 2
1.3解決方法 4
1.4論文架構 5
第二章 文獻回顧 6
2.1火焰傳遞 6
2.1.1 火焰基本物理量測 6
2.1.2 火焰拉伸 6
2.1.3 層流燃燒速度 7
2.2 紊流燃燒理論 8
2.2.1 預混紊流燃燒狀態圖 9
2.2.2紊流燃燒速度 11
2.3火焰不穩度性 12
2.3.1 流力不穩定性 12
2.3.2 熱擴散不穩定性 13
2.3.3 浮力不穩定性 14
2.4壓力效應 14
2.4.1壓力對層流燃燒速度之影響 14
2.4.2壓力對紊流燃燒速度之影響 15
2.5 溫度效應 16
2.5.1溫度對層流和紊流火焰速度之影響 16
2.6 紊流燃燒速度之關係式 17
2.6.1 Bradley之ST關係式 17
2.6.2 Kobayashi之ST關係式 17
2.6.3 Chaudhuri之ST關係式 18
2.6.4 Liu之ST關係式 19
第三章 實驗設備與方法 32
3.1 高溫高壓預混紊流燃燒設備 32
3.1.1雙腔體三維十字型燃燒爐 32
3.1.2 十字型燃燒爐之加熱系統 33
3.1.3 燃油供應系統 34
3.2 高速影像擷取系統 34
3.3 參數計算與影像資料分析 35
3.4.1燃氣當量比 35
3.4.2 火焰傳遞速度 36
3.5實驗流程 37
第四章 結果與討論 41
4.1燃燒火焰速度 41
4.1.1層流火焰速度量測 41
4.1.2不同當量比之層流燃燒速度 42
4.1.3紊流燃燒速度量測 43
4.2溫度效應對ST和SL之影響 43
4.3壓力效應對ST和SL之影響 44
4.4 Le效應對ST關係式之影響 45
第五章 結論與未來工作 59
5.1結論 59
5.2 未來工作 60
參考文獻 61
參考文獻 [1] 經濟部能源局,“中華民國106年能源統計手冊”,2017年。
[2] 于德維,“高溫高壓預混異辛烷火焰之層流與紊流燃燒速度量測與正規化分析”,國立中央大學機械工程研究所,碩士論文,2017年。
[3] M. T. Nguyen, D. W. Yu, S. S. Shy, “General Correlations of High Pressure Turbulent Burning Velocities with the Consideration of Lewis Number Effect,” Proceedings of the Combustion Institute, Vol.37, 2018.
[4] D. Bradley, A. K. C. Lau, M. Lawes, “Flame stretch rate as a determinant of turbulent burning velocity,” Physical Sciences and Engineering, pp. 359-387, 1992.
[5] H. Kobayashi, Y. Kawabata, K. Maruta, “Experimental study on general correlation of turbulent burning velocity at high pressure,” Symposium on Combustion, Vol. 27, pp. 941-948, 1998.
[6] S. Chaudhuri, F. Wu, D. Zhu, C. K. Law, “Flame speed and self-similar propagation of expanding turbulent premixed flames”, Physical Review Letters, Vol. 108, pp. 044503-1-5, 2012.
[7] C. C. Liu, S. S. Shy, M. W. Peng, C. W. Chiu, Y. C. Dong, “High-pressure burning velocities measurements for centrally-ignited premixed methane/air flames interacting with intense near-isotropic turbulence at constant Reynolds numbers”, Combustion and Flame, Vol. 159, pp. 2608-2619, 2012.
[8] T. Kitagawa, T. Ogawa, Y. Nagano, “The effects of pressure on unstretched laminar burning velocity, Markstein length and cellularity of spherically propagating laminar flames”, Proceedings of the International symposium on diagnostics and modeling of combustion in internal combustion engines, Japan, 2004.
[9] D. Bradley, T. M. Cresswell, J. S. Puttock, “Flame acceleration due to flame-induced instabilities in large-scale explosions”, Combustion and Flame, Vol. 124, pp. 551-559, 2001.
[10] W. K. Kim, T. Mogi, K. Kuwana, R. Dobashi, “Self-similar propagation of expanding spherical flames in large scale gas explosions”, Proceedings of the Combustion Institute, Vol. 35, pp. 2051-2058, 2015.
[11] H. Kido, M. Nakahara, “A model of turbulent burning velocity taking the preferential diffusion effect into consideration”, JSME International Journal. Ser. B, Fluids and Thermal Engineering, Vol. 41(3), pp. 666-673, 1998.
[12] C. C. Liu, S. S. Shy, H. C. Chen, M. W. Peng, “On interaction of centrally-ignited, outwardly-propagating premixed flames with fully-developed isotropic turbulence at elevated pressure”, Proceedings of the Combustion Institute, Vol. 33, pp. 1293-1299, 2011.
[13] G. Darrieus, “Propagation d′un front de flamme”, La Technique Moderne, Paris, 1938.
[14] G. H. Markstein, Nonsteady Flame Propagation, Pergamon, 1964.
[15] 彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[16] 黃信閔,“預混紊流球狀火焰速率與自我相似傳播之量測分析”,國立中央大學機械工程研究所,碩士論文,2013年。
[17] 陳立龍,“高壓預混紊流球狀擴張火焰之自我加速性和其火焰速率於不同Lewis數(Le < 1, Le ≈ 1, Le > 1)”,國立中央大學機械工程研究所,碩士論文,2014年。
[18] 李文義,“實驗研究密度比效應對紊流火焰速率之影響”,國立中央大學能源工程研究所,碩士論文,2015年。
[19] 陳聖鶴,“高壓貧油預混氫氣紊流燃燒速度量測和正規化及其與不同碳氫燃料之比較”,國立中央大學機械工程研究所,碩士論文,2016年。
[20] G. Damköhler, Z. Elektrchem, “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, English translation NASA Tech, pp 1112, 1947.
[21] F. A. Williams, Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, (1985)
[22] R. Borghi, “On the structure and morphology of turbulent premixed flames,” C. Casci Ed., pp. 117-138, New York, Plenum, 1985.
[23] K. N. C. Bray, “Turbulent flows with premixed reactants”, Turbulent Reacting Flows, P. A. Libby & F. A. Williams Eds., pp. 115-183, New York, Springer-Verlag, 1980.
[24] N. Peters, “Laminar flamelet concepts in turbulent combustion”, Proceedings of the Combustion Institute, Vol. 21, pp. 1231-1250, 1986.
[25] D. Bradley, M. Lawes, M. S. Mansour, “Correlation of turbulent burning velocities of ethanol–air, measured in a fan-stirred bomb up to 1.2 MPa”, Combustion and Flame, Vol. 158, pp. 123-138, 2011.
[26] L. D. Landau, “On the theory of slow combustion”, Acta Physicochim URSS, Vol. 19, pp. 77-85, 1944.
[27] C. K. Law, and C. J. Sung, “Structure, Aerodynamics, and Geometry of Premixed Flamelet”, Prog. Energy Combust. Sci., 26, 459-505 (2000).
[28] G. E. Andrews, D. Bradley, “The Burning Velocity of Methane-Air Mixtures”, Combustion and Flame, 19: 275-288, 1972
[29] C. K. Law, Combustion Physics, Cambridge, New York City, 2006.
[30] I. Glassman, Combustion, Third Ed., Academic Press, San Diego City, 1996.
[31] S. R. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill, 2012.
[32] O. C. Kwon, G. Rozenchan, C. K. Law, “Cellular instabilities and self-acceleration of outwardly propagation spherical flames”, Proceedings of the Combustion Institute, Vol. 29, pp. 1775-1783, 2002.
[33] A. P. Kelley, G. Jomaas, C. K. Law, “Critical radius for sustained propagation of spark-ignited spherical flames”, Combustion and Flame, Vol. 156, pp. 1006-1013, 2009
[34] M. Lawes, M. P. Ormsby, C. G. W. Sheppard, R. Woolley, “The turbulent burning velocity of iso-octane/air mixtures”, Combustion and Flame, Vol. 159, pp. 1949-1959, 2012.
[35] D. Bradley, P. H. Gaskell, X. J. Gu, A. Sedaghat, “Premixed flamelet modelling: Factors influencing the turbulent heat release rate source term and the turbulent burning velocity”, Combustion and Flame, Vol. 143, pp. 227-245, 2005
[36] H. Kobayashi, T. Tamura, K. Maruta, T. Niioka, “Burning Velocity of Turbulent Premixed Flames in a High-pressure Environment”, Symposium (International) on Combustion, Vol. 26, pp. 389-396, 1996.
[37] L. J. Jiang, S. S. Shy, W. Y. Li, H. M. Huang, M. T. Nguyen, “High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames”, Combustion and Flame, Vol. 172, pp. 173-182, 2016.
[38] S. S. Shy, W. J. Lin, K. Z. Peng, “High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner”, Proceedings of the Combustion Institute, Vol. 28, pp. 561-568, 2000.
[39] S. S. Shy, W. J. Lin, J. C. Wei, “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond. A, Vol. 456, pp. 1997-2019, 2000.
[40] S. S. Shy, W. K. I, M. L. Lin, “A new cruciform burner and its turbulence measurements for premixed turbulent combustion study”, Experimental Thermal and Fluid Science, Vol. 20, pp. 105-114, 2000.
[41] T. S. Yang, S. S. Shy, Y. P. Chyou, “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis”, J. Mech., Vol. 21, pp. 157-169, 2005.
[42] T. S. Yang, S. S. Shy, “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements”, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.
[43] X. Wang, X. Fan, K. Yang, J. Wang, X. Jiao, Z. Guo, “Laminar flame characteristics and chemical kinetics of 2-methyltetrahydrofuran and the effect of blending with isooctane”, Combustion and Flame, Vol. 191, pp. 213-225, 2018.
[44] B. Galmiche, F. Halter, F. Foucher, “Effects of high pressure, high temperature and dilution on laminar burning velocities and Markstein lengths of iso-oc- tane /air mixtures”, Combustion and Flame, Vol. 159, pp. 3286-3299, 2012
[45] M. Metghalchi, J. C. Keck, “Laminar burning velocity of propane-air mixtures at high temperature and pressure”, Combustion and Flame, Vol. 38, pp. 143-154, 1980
[46] D. Bradley, R. A. Hicks, M. Lawes, C. G. W. Sheppard, R. Woolley, “The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-octane–Air and Iso-octane–n- Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb,” Combustion and Flame, Vol. 115, pp. 126-144, 1998.
[47] A. A. Konnov, A. Mohammad, V.R. Kishore, N.I. Kim, C. Prathap, S. Kumar, “A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel+air mixtures”, Progress in Energy and Combustion Science, Vol. 68, pp. 197-267, 2018.
指導教授 施聖洋 審核日期 2018-11-6
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明