參考文獻 |
Abdersson, J., Dverstorp, B., 1987. Conditional simulations of fluid flow in three-dimensional networks of discrete fractures, Water Resource Research 23 (10), 1876-1886.
Anderson, J., and Deverstorp, B., 1987. Conditional Simulations of Fluid Flow in Three-Dimensional Networks of Discrete Fractures. Water Resources Research, 23, 10, 1876-1886.
Baghbanan, A., Jing, L., 2007. Hydraulic properties of fractured rock masses with correlated fracture length and aperture. Int J Rock Mech Min Sci, 44(5): 704-719.
Bear, J., 1972. Dynamics of fluids in porous media. American Elsevier Publishing Co., New York.
Bear, J., Tsang, C. F., and De Marsily, G., 1993. Flow and contaminant transport in fractured rock. San Diego, California: Academic Press.
Bedient, P. B, Rifai, H. S., Newell, C. J., 1999. Ground Water Contamination: Transport and Remediation, 2nd edition
Berknowitz, B., Scher, H., 1998. Theory of anomalous chemical transport in random fracture networks. Phys. Rev. E 57, 5858.
Bogdanov, I. I., Mourzenko, V. V., Thovert, J. F., Thovert, J. F., 2003. Effective permeability of fractured porous media in steady state flow. Water Resource Res, 39(1).
Bouwer, E., Durant, N., Wilson, L., Zhang, W., Cunningham, A., 1994. Degradation of xenobiotic compounds in situ: Capabilities and limits. FEMS Microbiology Reviews, 15(2-3), 307 – 317.
53
Bradley, P. M., 2000. Microbial degradation of chloroethenes in groundwater systems. Hydrogeology Journal, 8(1), 104 – 111.
Cadini, F., Bertoli, I., Sanctis, J. D., Zio, E., 2012. A novel particle tracking scheme for modeling contaminant transport in a dual-continua fractured medium. Water resources research, vol. 48, W10517, doi:10.1029/2011WR011694, 2012.
Carrera, J., Heredia, J., Vomvoris, S., Hufschmied, P., 1990. Modeling of flow on a small fractured monzonitic gneiss block: Selected paper in Hydrogeology of Low Permeability Environments. Int. Assoc. Hydrogeologists Hydrogeol. 2, 115–167.
Chiles, J.P., De Marsily, G., 1993. Chapter 4: Stochastic models of fracture system and their use in flow and transport modeling.
Davison, C. C., 1985. URL Drawdown experiment and comparison with models. TR 375, Atomic Energy of Canada Ltd., Pinawa, Manitoba.
Davy, P., Goc, R. L., Darcel, C., Bour, O., Dreuzy, J. R. D., Munier, R., 2010. Journal of geophysical research, vol. 115, B10411.
Dershowitz, B., LaPointe, P., Eiben, T., Wei, L., 1998. Integration of discrete fracture network methods with conventional simulator approaches: Society of Petroleum Engineers Annual Technical Conference and Exhibition, New Orleans, Louisiana (September 27–30), SPE Paper 49069, 9 p.
Dershowitz, W. S. and Herda, H. H. 1992. Interpretation of fracture spacing and intensity. In 33rd US Symposium on Rock Mechanics, Santa Fe, NM, pp. 757‐766.
Dershowitz, W. S., 1984. Rock joint system. Dissertation, Massachusetts Institute of Technology.
Dershowitz, W., and Miller, I., 1995. Dual porosity fracture flow and transport. Geophysical research letters, Vol. 22, no. 11, p1441 – 1444.
54
Dershowitz, W., Follin, S., Eiben, T., Andersson, J., 1999. SR 97-alternative models project: discrete fracture network modelling for performance assessment of Aberg, SKB Report R-99-43. Swedish Nuclear Fuel and Waste Management Co., Stockholm, Sweden.
Devries, P. L. and Hasbun, J. E., 2011. A first course in computational physics. Second edition. Jones and Bartlett Publishers, p. 215.
Diederik, J., Jirka, S. HP1 (HYDRUS-1D + PHREEQC): Additional HP1 Exercises. Waste and Disposal, SCK•CEN, Mol, Belgium, Department of Environmental Sciences, University of California, Riverside, USA.
Erhel, J., De Dreuzy, J. R., Poirriez, B., 2009. Flow simulation in three-dimensional discrete fracture networks. SIAM J Sci Comput, 31(4): 2688-2705
Fisher, N. I., 1996. Statistical Analysis of Circular Data. Cambridge University Press
Golder Associates Inc, 2016. FracMan: Interactive Discrete Feature Data Analysis, Geometric Modeling and Exploration Simulation. Seattle, Washington, USA.
Gonzalez-Garcia, R., Huseby, O., Thovert, J. F., et al., 2000. Three-dimensional characterization of a fractured granite and transport properties. J Geophys Res: Solid Earth, 105(B9): 21387-21401.
Hadgu, T., Karra, S., Kalinina, E., Makedonska, N., Hyman, J. D., Klise, K., ... & Wang, Y., 2017. A comparative study of discrete fracture network and equivalent continuum models for simulating flow and transport in the far field of a hypothetical nuclear waste repository in crystalline host rock. Journal of Hydrology, 553, 59-70.
Hao, Y., Fu, P., Carrigan, C.R., 2013. Application of dual-continuum model for simulation of fluid flow and heat transfer in fractured geothermal reservoirs. In: Proceedings, 38-th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, February 11–13, 2013, SGP-TR-198.
55
Hartley, L., Joyce, S., 2013. Approaches and algorithms for groundwater flow modeling in support of site investigations and safety assessment of the Forsmark site Sweden. J. Hydrol. 500, 200–216.
Hass, P. E. and Weidemeier, T. H., 2004. Accelerated Bioremediation, A Training Course by National Groundwater Association, St. Paul, Minnesota, May 11-12, 2004.
Henry, V., 2015. Applied Groundwater Modeling
Herbert, A., Gale, G., Lanyon, G., and MacLeod, R., 1991. Modeling for the Stripa site characterization and validation drift inflow; prediction of flow through fractured rock. SKB Report 91-35, Swedish Nuclear Power and Waste Management Co., Stockholm.
Hsieh, P.A., Neuman, S.P., Stiles, G.K., Simpson, E.S., 1985. Field determination of the three dimensional hydraulic conductivity tensor of anisotropic media, 2, Methodology and application to fractured rocks. Water Resour. Res. 21 (11), 1667–1676.
Huang, N., Jiang, Y., Li, B., Liu, R., 2016. A numerical method for simulating fluid flow through 3-D fracture networks. Journal of Natural Gas Science and Engineering xxx 1 – 11
Hull, L. C., Miller, J. D., Clemo, T. M., 1987. Laboratory and simulation studies of solute transport in fracture networks. Water Resource Res, 23(8): 1505-1513.
Hyman, J. D., Karra, S., Makedonska, N., Gable, C. W., Painter, S. L., Viswanathan, H. S., 2015. DFNWorks: A discrete fracture network framework for modeling subsurface flow and transport. Comput Geosci, 84: 10-19
Irwin, R. J., 1997. Environmental Contaminants Encyclopedia, Entry for Tetrachloroethylene, National Park Service, CO, 1997.
Isaaks, E. H., & Srivastava, R. M., 1989. Applied Geostatistics.
56
Ivanova, V. M., Sousa, R., Murrihy, B., Einstein, H. H., 2014. Mathematical algorithm development and parametric studies with the GEOFRAC three-dimensional stochastic model of natural rock fracture systems. Comput Geosci, 67: 100-109.
Jackson, C.P., Hoch, A.R., Todman, S., 2000. Self-consistency of a heterogenous continuum porous medium representation of a fractured medium. Water Resour. Res. 36 (1), 189–202.
Jing, L., 2003. A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min Sci; 40:283–353.
Karra, S., Makedonska, N., Viswanathan, H.S., Painter, S.L., Hyman, J.D., 2015. Effect of advective flow in fractures and matrix diffusion on natural gas production. Water Resour. Res 51 (10), 8646–8657.
Koivisto, M. M., Laine, E., 2012. MATLAB script for analyzing and visualizing scanline data. Computers & Geosciences 40 (2012) 185–193.
Koudina, N., Garcia, R. G., Thovert, J. F., Adler, P. M., 1998. Permeability of three-dimensional fracture networks. Phys Rev E, 57(4): 4466.
Lawrence, S. J., 2006. Description, Properties, and Degradation of Selected Volatile Organic Compounds Detected in Ground Water — A Review of Selected Literature. U.S. Geological Survey, Reston, Virginia.
Lee, C. C., Lee, C. H., Yeh, H. F., Lin, H. I., 2011. Modeling spatial fracture intensity as a control on flow in fractured rock. Environ Earth Sci 63:1199–1211.
Lei, Q., Latham, J.P, Tsang, C.F., 2017. Review: The use of discrete fracture networks for modelling coupled geomechanical and hydrological behaviour of fractured rocks. Computers and Geotechnics 85 (2017) 151–176
57
Lichtner, P., Hammond, G., Lu, C., Karra, S., Bisht, S., Andre, B., Mills, R., Kumar, J., 2015. PFLOTRAN user manual: a massively parallel reactive flow and transport model for describing surface and subsurface processes, Technical report LA-UR-15-20403. Los Alamos Natl. Lab, Los Alamos, N. M.
Lipson, D. S., McCray, J. E., and Thyne, G. D., 2007. Using PHREEQC to simulate solute transport in fractured bedrock. Ground water Vol.45, no.4, 468-472.
Liu, R., Li, B., Jiang, Y., 2016. Critical hydraulic gradient for nonlinear flow through rock fracture networks: The roles of aperture, surface roughness, and number of intersections. Adv Water Resour, 88: 53-65.
Long, J. C. S., Aydin, A., Brown, S. R., Einstein, H. H., Hestir, K., Hsieh, P. A., ... & Paillet, F. L., 1996. Rock fractures and fluid flow: contemporary understanding and applications.Committee on Fracture Characterization and Fluid Flow, National Academy Press, Washington, DC.
Long, J. C. S., Remer, J. S., Wilson, C. R., Witherspoon, P. A., 1982. Porous media equivalents for networks of discontinuous fractures. Water resources research, vol. 18, no. 3, p 645-658.
Makedonska, N., Painter, S. L., Bui, Q. M., Gable, C. W., & Karra, S., 2015. Particle tracking approach for transport in three-dimensional discrete fracture networks. Computational Geosciences, 19(5), 1123-1137.
Mardia, K. V., 1972. Statistics of Directional Data. 1st Edition. Academic Press
Maymo-Gatell, X., Chien, Y., Gossett, J. M., Zinder, S. H., 1997. Isolation of a Bacterium That Reductively Dechlorinates Tetrachloroethene to Ethene. Science, 276 (5318), 1568-1571.
McCarty, P. L., Semprini, L., 1994. Ground – water treatment for chlorimated solvents.
58
Miller, I., Lee, G., Derchowitz, W., 2001. User documentation MAFIC: matrix/fracture hydraulic interaction code with solute transport.
Miller, I., Lee, G., Dershowitz, W., 2001. MAFIC Matrix/Fracture Interaction Code with heat and solute transport user documentation
Min, K. B., Jing, L., Stephansson, O., 2004. Determining the equivalent permeability tensor for fractured rock masses using a stochastic REV approach: method and application to the field data from Sellafield, UK. Hydrogeol J, 12(5): 497-510.
Mohebbi, M., Yarahmadi B. A. R., Fatehi, M. M., Gholamnejad, J., 2016. Rock mass structural data analysis using image processing techniques (Case study: Choghart iron ore mine northern slopes). Journal of Mining & Environment.
Neuman, A. P., and Depner, J. S., 1988. Use of variable scale pressure test data to estimate the log hydraulic conductivity covariance and dispersivity of fractured granites near Oracle, Arizona. Journal of Hydrology, 102(1-4):475-501.
Neuman, S.P., 2005. Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13, 124–147
Niven, E. B. and Deutsch, C. V. 2010. Relating different measures of fracture intensity. Paper 103, CCG Annual Report 12.
Noetinger, B., 2015. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for matrix to fracture flow. Journal of Computational Physics, 283: 205-223.
Odling, N. E., 1997. Scaling and connectivity of joint system in sandstones from western Norway. Journal of Structural Geology. Volume 19, Issue 10, October 1997, Pages 1257-1271.
59
Painter, S., Cvetkovic, V., 2005. Upscaling discrete fracture network simulations: an alternative to continuum transport models. Water Resour. Res. 10.1029-2004WR003682. 41, W02002.
Press, W.H., Teukolsky, S.A., Vetterling, W.T., and Flannery, B.P., 1992, Numerical Recipes in C--The Art of Scientific Computing, second edition: Cambridge University Press, 994 p.
Priest, S.D., Hudson, J.A., 1981. Estimation of discontinuity spacing and trace length using scanline surveys. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 18, 183–197.
Robinson, P. C., 1984. Connectivity, flow and transport in network models of fractured media. Doctor thesis of Philosophy at Oxford University.
Santharam, S., Ibbini, J., Davis, L. C., Erickson, L. E., 2004. Biodegradation of Tetrachlotoethylene (PCE) in Soil and Groundwater. Proceedings of the 33rd Annual Biochemical Engineering Symposium.
Smith, L., and Schwartz, F. W., 1984. An analysis of the influence of fracture geometry on mass transport in fractured media. Water Resources, Res.,20(9), 1241-1252.
Sucdicky, E. A., and McLaren, R. G., 1992. The Laplace transform Galerkin technique for the large scale simulation of mass transport in discretely fractured porous formation. Water Resources Research, 28(2):499-514.
Teutsch, G., Sauter, M., 1991. Groundwater flow and transport processes in karst aquifers—scale effects, data provision and model validation. In: EPA/NWWA international symposium on environmental problems in Karst Terrains, Nashville
Tsang, Y. W., Tsang, C. F., 2001. A particle-tracking method for advective transport in fractures with diffusion into finite matrix blocks. Water resources research, vol. 37, no. 3, pages 831-835.
60
Tsang, Y.W., Tsang, C.F., Hale, F.V., Dverstop, B., 1996. Tracer transport in a stochastic continuum model of fractured media. Water Resour. Res. 32, 3077– 3092.
U.S. Environmental Protection Agency (USEPA) Office of Solid Waste and Emergency Response,2001. The State-of-the Practice of Characterization and Remediation of Contaminated Ground Water at Fractured Rock Sites (EPA 542-R-01-010)
Uchida, M., Doe, T., Dershowitz, W., Thomas, A., Wallmann, P., Sawada, A., 1994. Discrete-fracture modeling of the Aspo LPT-2, large-scale pumping and tracer test, SKB International Cooperation report ICR 94–09. Swedish Nuclear Fuel and waste Management Co., Stockholm, Sweden.
USGS 1999. User’s guide to PHREEQC (version 2)— a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculation.
Vitolins, A. R., Goldstein, K. J., Navon, D., Anderson, G. A., Wood, S. P., Parker, B., & Cherry, J. Technical and Regulatory Challenges Resulting from Voc Matrix Diffusion in a Fractured Shale Bedrock Aquifer.
Xu, T., and Pruess, K., 2001. Modeling multiphase non-isothermal fluid flow and reactive geochemical transport in variably saturated fractured rocks: 1. methodology. American Journal of Science 301, no. 1: 16-33.
Yanenko, N., 1971, The method of fractional steps: Springer, New York.
Yu, Q., Tanaka, M. and Ohnishi, Y., 1999. An inverse method for the model of water flow in discrete fracture network. Proc. of 34th Japan National Conf. on Geotechnical Engineering, Tokyo. pp. 1303–1304
Zhao, Z., Jing, L., Neretnieks, I., Moreno, L., 2011. Numerical modeling of stress effects on solute transport in fractured rocks. Comput Geotech, 38(2): 113-126.
61
Zimmerman, R. W. and Bodvarsson, G. S., 1996. Effective transmissivity of two-dimensional fracture networks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 33(4):433–436 |