博碩士論文 105326021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:82 、訪客IP:3.137.164.43
姓名 何怡慧(YI-HUEI HE)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 2017年台灣細懸浮微粒(PM2.5) 污染來源推估及化學成分特性變化
相關論文
★ 台灣北部地區大氣氣膠有機酸特性★ 北部氣膠超級測站近七年氣膠特性變化探討
★ 鹿林山背景大氣及受生質燃燒事件影響的氣膠化學特性★ 鹿林山大氣氣膠含水量探討及乾氣膠光學特性
★ 中南半島近污染源生質燃燒氣膠特性及其傳輸演化與東沙島氣膠特性★ 鹿林山大氣背景站不同氣團氣膠光學特性
★ 台灣細懸浮微粒(PM2.5)空氣品質標準建置研究★ 台灣都市地區細懸浮微粒(PM2.5)手動採樣分析探討
★ 2011年不同來源氣團鹿林山氣膠水溶性無機離子動態變化★ 台灣都會區細懸浮微粒(PM2.5)濃度變化影響因子、污染來源及其對大氣能見度影響
★ 2012年越南山羅高地生質燃燒期間氣膠特性及2003-2012年台灣鹿林山氣膠來源解析★ 2011年生質燃燒期間越南山羅高地和台灣鹿林山氣膠特性
★ 2013年7SEAS國際觀測對北越南山羅生質燃燒期間氣膠化學特性及來源鑑定★ 中南半島近生質燃燒源區與傳輸下風鹿林山氣膠特性及來源解析
★ 台灣北、中′南部細懸浮微粒(PM2.5)儀器比對成分分析與來源推估★ 2013年春季鹿林山和夏季龍潭氣膠水溶性離子短時間動態變化特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本文以正矩陣因子法(Positive Matrix Factorization, PMF)及條件機率函數(Conditional Probability Function, CPF)推估2017年「細懸浮微粒(PM2.5)化學成分監測及分析計畫」(以下稱為「2017年計畫」) 6個測站PM2.5污染來源,並以潛在源貢獻因子法(Potential Source Contribution Function, PSCF)探討每個測站硫酸鹽長程傳輸軌跡起源。針對「2017年計畫」在PM2.5高濃度(≧35 μg m-3)時,硝酸根離子在PM2.5占比提高及台灣西部測站有時出現的凌晨PM2.5高濃度現象,本文彙整上述發現的各種污染物濃度及環境條件。此外,本文也推估原生有機碳和二次有機碳濃度以瞭解彼此濃度分布。
污染源推估結果顯示板橋站以F3 (二次硫酸鹽與工業鍋爐)為最重要污染源,推論受樹林等工業區影響。忠明站最重要污染源為F4 (二次硝酸鹽),推測與國道1號等交通排放有關。斗六站也是以F3 (二次硝酸鹽)為最重要污染源,可能受到雲林科技園區與國道3號擴散不佳影響。嘉義站最重要污染源為F1 (二次硝酸鹽),從污染來向推論受嘉太工業區和交通排放影響。F3 (二次硝酸鹽與揚塵)是小港站最重要污染源,推論受大發、臨海工業區等影響。具體來說,花蓮站是以F4 (二次硫酸鹽與工業鍋爐)為最重要污染源,推論與海上船舶及美崙工業區有關。
以PSCF追溯各測站(二次硫酸鹽)因子軌跡起源,僅有板橋站來自大陸山東及江蘇省,其他測站多以本地污染源為主。忠明站傳輸污染與台中焚化廠、台中工業區與彰濱工業區等有關;斗六站與斗六工業區等污染源混合影響有關。嘉義站可能受台南南部科學工業園區(南科)影響;小港站則受仁武垃圾焚化廠、大發工業區、中國鋼鐵、林園工業區等混合影響;花蓮站在東北方海面上有污染貢獻,推論受船舶影響。
當台灣西部發生高濃度PM2.5,NO3-呈現高濃度占比,主要與風速低造成的污染物累積與前日污染殘留影響有關。氣膠水溶性離子成分使用ISORROPIA模式進行模擬,指出以(NH4)2SO4、NH4NO3結合型態為主,顯示有氨氣充足現象;這可由台灣北至南部5個測站過剩NH4+與NO3-莫耳濃度有很好相關性(R2) 0.79、0.89、0.89、0.89、0.90得到驗證。至於偏離過剩NH4+與NO3-線性關係較大的離群值,推測可能與夜間高硝酸根離子和NO2濃度的N2O5水解等有關。顯然地,凌晨PM2.5高濃度現象受到前一天氣體污染物濃度影響,其中,以NOX濃度較高,SO2濃度雖然較低,但和前一天濃度差異百分比也不小,NOX和SO2管制具有相同重要性。
透過EC-tracer方法推估板橋站的二次有機碳占OC約32-38%、忠明站約23-41%、斗六站約44-56%、嘉義站約30-47%、小港站約30-57%、花蓮站約28-46%,顯示台灣地區PM2.5 有機碳組成以原生有機碳為主,來源主要是交通活動相關排放與生質燃燒。
綜合而言,除了板橋站有部分SO42-來自中國北方外,台灣西部地區PM2.5以本地污染源貢獻為主,特別是NO3-。高濃度PM2.5事件的高NO3-濃度占比與風速低及較高NOX有關。至於夜間高濃度NO3-可能與高NO2和較高環境相對濕度導致N2O5水解有關。
摘要(英) This study used Positive Matrix Factorization (PMF) and Conditional Probability Function (CPF) to identify PM2.5 source contributions of the six stations in the “PM2.5 chemical composition monitoring and analysis study” in 2017 (henceforth referred to “2017 Study”). In addition, the Potential Source Contribution Function (PSCF) was applied to investigate the trajectory origins of sulfates through long-range transport to each site. Given the proportion of PM2.5 nitrate ion was higher in a high PM2.5 event (≧35 μg m-3) and frequent occurrence of high PM2.5 in the western area of Taiwan in the midnight in “2017 Study”, this study summarized the pollutant concentrations and environmental conditions associated with the above findings. Moreover, this study estimated primary and secondary organic carbon concentrations to understand the relative distribution of each other.
The source apportionment results showed that F3 (secondary sulfate and industrial boiler) was the main source factor under the influence of the Shulin Industrial Zone at the Banqiao station. For the Zhongming station, F4 (secondary nitrate) was the most important source factor caused by Freeway 1 and other traffic emissions. F3 (secondary nitrate) was the most significant source factor affected by Yunlin Technology Industrial Park and Freeway 3 during poor ventilation of the Douliu station. Similarly, F1 (secondary nitrate) was the source factor contributed the most and was related to Jiatai Industrial Zone plus intensive traffic emissions at the Chiayi station. For the Xiaogang station, F3 (secondary nitrate and soil dust) was the major source factor under the influences of the Dafa and Linhai Industrial Zones. Specifically, ship emissions from the sea and Meilun Industrial Zone accounted for the worst source factor of F4 (secondary sulfate and Industrial boiler) at the Hualien Station.
PSCF modeling for the trajectory origins of “secondary sulfate” of various stations only to find that the Banqiao Station was under the influence of Shandong and Jiangsu Provinces in China. In contrast, local pollution sources affected other stations. For example, Taichung Incineration Plant, as well as Taichung and Changbin Industrial Zones affected the Zhongming Station. The mixed sources including Douliu Industrial Zone influenced the Douliu Station. The Southern Taiwan Science Park might have affected the Chiayi Station. Moreover, a mix of sources affected the Xiaogang Station such as Renwu Refuse Incineration Plant, Dafa Industrial Zone, China Steel Corporation, and Linyuan Industrial Zone. The ship emissions in the northeastern direction to the Hualien station might have caused the pollution.
The high NO3- proportion in high PM2.5 concentration events were mainly under the influences of pollutant accumulation due to low wind speed and the pollutant left-overs from the previous day. ISORROPIA modeling indicated the abundance of NH4+ such that the main compound forms were (NH4)2SO4 and NH4NO3 of the water-soluble inorganic ions. This was evidenced by the excellent correlations (R2) between excess molar concentrations of NH4+ and NO3- were 0.79, 0.89, 0.89, 0.89, and 0.90 in the five stations from north to south in Taiwan. For the outliers that deviate from the linear relationship between excess NH4+ and NO3- might be related to the occurrence of N2O5 hydrolysis under high NO3- and NO2 concentrations at night. Apparently, the pollutant concentrations of the previous days affected the midnight high PM2.5 concentrations. Among various gas pollutants, NOX concentrations were the highest with great deviations with that of the previous day; however, the control of NOX and SO2 were of equal importance as SO2 was also with great deviations with that of the previous days.
The estimates from the EC-Tracer method showed that the proportions of secondary organic carbon over organic carbon (OC) were 32-38% at the Banqiao station, 23-41% at the Zhongming station, 44-56% at the Douliu station, 30-47% at the Chiayi station, 30-47% at the Xiaogang station, and 28-46% at the Hualien station, respectively. It implies that primary OC is the major OC in Taiwan. The sources are mainly associated with emissions from transportation activities and biomass burning.
In summary, local pollution sources are mainly responsible for PM2.5 concentration especially for NO3- in the western area of Taiwan except part of SO42- transported from northern China. Low wind speed and higher NOX were associated with the high proportion of NO3- in high PM2.5 concentration events. As for the high concentration of NO3- at night, it might be related to N2O5 hydrolysis under high NO2 and relative humidity in the environment.
關鍵字(中) ★ 細懸浮微粒(PM2.5)
★ PM2.5化學成分
★ PMF與CPF來源推估
★ PSCF
★ EC-tracer
關鍵字(英) ★ PM2.5
★ chemical components
★ PMF
★ CPF
★ PSCF
★ EC-Trace r
論文目次 摘要 I
Abstract III
致謝 VI
目錄 VII
表目錄 X
圖目錄 XII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 細懸浮微粒(PM2.5)重要性之文獻 3
2.1.1 PM2.5對人體的危害 3
2.1.2 PM2.5對環境的影響 4
2.2 細懸浮微粒(PM2.5)形成來源 5
2.2.1 PM2.5氣膠水溶性離子組成與機制 6
2.2.2 PM2.5氣膠碳成分組成與機制 10
2.2.3 PM2.5金屬成分來源 13
2.3台灣細懸浮微粒(PM2.5)特性 15
2.4 受體模式正矩陣因子法PMF(Positive Matrix Factorization)應用 18
2.5 潛在源貢獻因子法(Potential source contribution function, PSCF ) 20
第三章 研究方法 23
3.1 研究架構與流程 23
3.2採樣地點與時間 25
3.2.1 採樣地點 26
3.2.2 採樣時間 27
3.3 PM2.5手動採樣儀器 28
3.3.1 MetOne SASS PM2.5採樣器 28
3.3.2 MetOne E-FRM PM2.5採樣器 30
3.4 PM2.5質量濃度和化學成分分析方法 31
3.4.1 濾紙採樣前準備 31
3.4.2 氣膠水溶性離子分析方法 32
3.4.3 氣膠碳成分分析方法 33
3.4.4 質量濃度秤重分析 35
3.4.5 氣膠微粒揮發成分補償方法 36
3.4.6 氣膠金屬元素成分檢驗分析方法 37
3.5 正矩陣因子法PMF(Positive Matrix Factorization)概要 42
3.5.1 輸入資料處理 43
3.5.2 模式操作 44
3.4 條件機率函數CPF(Conditional probability function)推估方法 48
3.5 潛在源貢獻因子法(Potential source contribution function, PSCF ) 49
3.6 ISORROPIA模式概要 50
第四章 結果與討論 51
4.1 PMF受體模式推估污染來源 51
4.1.1 板橋站PM2.5污染來源 52
4.1.2 忠明站PM2.5污染來源 61
4.1.3 斗六站PM2.5污染來源 70
4.1.4 嘉義站PM2.5污染來源 79
4.1.5 小港站PM2.5污染來源 87
4.1.6 花蓮站PM2.5污染來源 96
4.1.7 各測站因子數選擇比較 103
4.1.8 各測站PMF污染源推估結果比較 104
4.2 潛在源貢獻因子法(Potential source contribution function, PSCF) 105
4.2.1 台灣各測站軌跡線群集分析 105
4.2.2 台灣各測站二次硫酸鹽因子PSCF分析 109
4.3高硝酸根離子濃度占比、PM2.5水溶性離子組成及凌晨PM2.5高濃度現象 117
4.3.1 台灣北中南部高濃度硝酸根離子環境條件 117
4.3.2 PM2.5水溶性離子組成 125
4.3.3 凌晨PM2.5高濃度 129
4.4 PM2.5二次有機碳成分推估 133
4.4.1 台灣北中南都會區、雲嘉區及東部PM2.5與碳成分相關探討 133
4.4.2 PM2.5二次有機碳成分推估 138
第五章 結論與建議 145
5.1 結論 145
5.2 建議 147
第六章 參考文獻 148
附錄一 PMF受體模式檢測結果 171
附錄二 板橋、忠明與小港站PMF結合CPF對應方向主要的公私場所排放量 173
附錄三 台灣民國102年行業別版排放量分類統計表 174
附錄四 2017年1-3月、10-12月火點圖 176
附錄五 各測站因子數選擇比較 179
附錄六 高濃度硝酸鹽採樣日天氣因子 186
附錄七 離群值環境條件 195
附錄八 不同季節修正後PM2.5濃度與氣態污染物監測資料 199
附錄九 不同季節非燃燒與燃燒反應生成的POC 200
附錄十 各測站PM2.5季節成分濃度(μg m-3)與占比(%) 201
附錄十一 口試委員意見答覆 202
參考文獻 Almeida, S., Pio, C., Freitas, M., Reis, M., Trancoso, M., 2005. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment 39, 3127-3138.
Amato, F., Hopke, P.K., 2012. Source apportionment of the ambient PM2. 5 across St. Louis using constrained positive matrix factorization. Atmospheric environment 46, 329-337.
Amato, F., Pandolfi, M., Escrig, A., Querol, X., Alastuey, A., Pey, J., Perez, N., Hopke, P., 2009. Quantifying road dust resuspension in urban environment by multilinear engine: a comparison with PMF2. Atmospheric Environment 43, 2770-2780.
Amato, F., Pandolfi, M., Moreno, T., Furger, M., Pey, J., Alastuey, A., Bukowiecki, N., Prevot, A., Baltensperger, U., Querol, X., 2011a. Sources and variability of inhalable road dust particles in three European cities. Atmospheric Environment 45, 6777-6787.
Amato, F., Viana, M., Richard, A., Furger, M., Prévôt, A., Nava, S., Lucarelli, F., Bukowiecki, N., Alastuey, A., Reche, C., 2011b. Size and time-resolved roadside enrichment of atmospheric particulate pollutants. Atmospheric Chemistry and Physics 11, 2917-2931.
Andreae, M., Merlet , P., 2001. Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles 15, 955-966.
Andreae, M.O., 1983. Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220, 1148-1151.
Appel, B., Tokiwa, Y., Haik, M., 1981. Sampling of nitrates in ambient air. Atmospheric Environment (1967) 15, 283-289.
Arakaki, T., Azechi, S., Somada, Y., Ijyu, M., Nakaema, F., Hitomi, Y., Handa, D., Oshiro, Y., Miyagi, Y., Tsuhako, A., 2014. Spatial and temporal variations of chemicals in the TSP aerosols simultaneously collected at three islands in Okinawa, Japan. Atmospheric environment 97, 479-485.
Ashbaugh, L.L., Malm, W.C., Sadeh, W.Z., 1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment (1967) 19, 1263-1270.
Barrett, J.R., 2014. Apples to apples: comparing PM2. 5 Exposures and birth outcomes in understudied countries. Environmental health perspectives 122, A110.
Bates, T., Quinn, P., Coffman, D., Johnson, J., Middlebrook, A., 2005. Dominance of organic aerosols in the marine boundary layer over the Gulf of Maine during NEAQS 2002 and their role in aerosol light scattering. Journal of Geophysical Research: Atmospheres 110.
Bauer, H., Kasper-Giebl, A., Zibuschka, F., Hitzenberger, R., Kraus, G.F., Puxbaum, H., 2002. Determination of the carbon content of airborne fungal spores. Analytical Chemistry 74, 91-95.
Begum, B.A., Biswas, S.K., Kim, E., Hopke, P.K., Khaliquzzaman, M., 2005a. Investigation of sources of atmospheric aerosol at a hot spot area in Dhaka, Bangladesh. Journal of the Air & Waste Management Association 55, 227-240.
Begum, B.A., Kim, E., Jeong, C.-H., Lee, D.-W., Hopke, P.K., 2005b. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmospheric Environment 39, 3719-3724.
Bell, M.L., Ebisu, K., Peng, R.D., Samet, J.M., Dominici, F., 2009. Hospital admissions and chemical composition of fine particle air pollution. Am J Respir Crit Care Med 179, 1115-1120.
Bencs, L., Ravindra, K., de Hoog, J., Rasoazanany, E.O., Deutsch, F., Bleux, N., Berghmans, P., Roekens, E., Krata, A., Van Grieken, R., 2008. Mass and ionic composition of atmospheric fine particles over Belgium and their relation with gaseous air pollutants. Journal of Environmental Monitoring 10, 1148-1157.
Birmili, W., Allen, A.G., Bary, F., Harrison, R.M., 2006. Trace metal concentrations and water solubility in size-fractionated atmospheric particles and influence of road traffic. Environmental Science & Technology 40, 1144-1153.
Bond, T.C., Doherty, S.J., Fahey, D., Forster, P., Berntsen, T., DeAngelo, B., Flanner, M., Ghan, S., Kärcher, B., Koch, D., 2013. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118, 5380-5552.
Bosco, M., Varrica, D., Dongarra, G., 2005. Case study: inorganic pollutants associated with particulate matter from an area near a petrochemical plant. Environmental Research 99, 18-30.
Bressi, M., Sciare, J., Ghersi, V., Bonnaire, N., Nicolas, J., Petit, J.-E., Moukhtar, S., Rosso, A., Mihalopoulos, N., Féron, A., 2013. A one-year comprehensive chemical characterisation of fine aerosol (PM 2.5) at urban, suburban and rural background sites in the region of Paris (France). Atmospheric Chemistry and Physics 13, 7825-7844.
Buczyńska, A.J., Krata, A., Van Grieken, R., Brown, A., Polezer, G., De Wael, K., Potgieter-Vermaak, S., 2014. Composition of PM2. 5 and PM1 on high and low pollution event days and its relation to indoor air quality in a home for the elderly. Science of the Total Environment 490, 134-143.
Burnett, R.T., Brook, J., Dann, T., Delocla, C., Philips, O., Cakmak, S., Vincent, R., Goldberg, M.S., Krewski, D., 2000. Association between particulate-and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhalation toxicology 12, 15-39.
Calvert, J.G., Lazrus, A., Kok, G.L., Heikes, B.G., Walega, J.G., Lind, J., Cantrell, C.A., 1985. Chemical mechanisms of acid generation in the troposphere. Nature 317, 27.
Canepari, S., Perrino, C., Olivieri, F., Astolfi, M.L., 2008. Characterisation of the traffic sources of PM through size-segregated sampling, sequential leaching and ICP analysis. Atmospheric Environment 42, 8161-8175.
Cao, J., Lee, S., Ho, K., Fung, K., Chow, J.C., Watson, J.G., 2006. Characterization of roadside fine particulate carbon and its eight fractions in Hong Kong. Aerosol Air Qual. Res 6.
Cao, J., Wu, F., Chow, J., Lee, S., Li, Y., Chen, S., An, Z., Fung, K., Watson, J., Zhu, C., 2005. Characterization and source apportionment of atmospheric organic and elemental carbon during fall and winter of 2003 in Xi′an, China. Atmospheric Chemistry and Physics 5, 3127-3137.
Cass, G.R., 1998. Organic molecular tracers for particulate air pollution sources. TrAC Trends in Analytical Chemistry 17, 356-366.
Castro, L., Pio, C., Harrison, R.M., Smith, D., 1999. Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmospheric Environment 33, 2771-2781.
Cesari, D., Donateo, A., Conte, M., Merico, E., Giangreco, A., Giangreco, F., Contini, D., 2016. An inter-comparison of PM2. 5 at urban and urban background sites: Chemical characterization and source apportionment. Atmospheric Research 174, 106-119.
Chen, Y., Zhi, G., Feng, Y., Fu, J., Feng, J., Sheng, G., Simoneit, B.R., 2006. Measurements of emission factors for primary carbonaceous particles from residential raw‐coal combustion in China. Geophysical Research Letters 33.
Cheng, K., Wang, Y., Tian, H., Gao, X., Zhang, Y., Wu, X., Zhu, C., Gao, J., 2015. Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China. Environmental science & technology 49, 1206-1214.
Cheng, M.-C., You, C.-F., Cao, J., Jin, Z., 2012. Spatial and seasonal variability of water-soluble ions in PM2. 5 aerosols in 14 major cities in China. Atmospheric environment 60, 182-192.
Cheng, M.D., Lin, C.J., 2001. Receptor modeling for smoke of 1998 biomass burning in Central America. Journal of Geophysical Research: Atmospheres 106, 22871-22886.
Chio, C.-P., Cheng, M.-T., Wang, C.-F., 2004. Source apportionment to PM10 in different air quality conditions for Taichung urban and coastal areas, Taiwan. Atmospheric Environment 38, 6893-6905.
Choi, J.-k., Heo, J.-B., Ban, S.-J., Yi, S.-M., Zoh, K.-D., 2013. Source apportionment of PM2. 5 at the coastal area in Korea. Science of the Total Environment 447, 370-380.
Chow, J.C., Lowenthal, D.H., Chen, L.W., Wang, X., Watson, J.G., 2015. Mass reconstruction methods for PM2.5: a review. Air Qual Atmos Health 8, 243-263.
Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional Aerosol Visibility and Observational study. Chemosphere 54, 185-208.
Chow, J.C., Watson, J.G., Louie, P.K., Chen, L.-W.A., Sin, D., 2005. Comparison of PM2. 5 carbon measurement methods in Hong Kong, China. Environmental Pollution 137, 334-344.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Hackney, R., Magliano, K., Lehrman, D., Smith, T., 1999. Temporal variations of PM2. 5, PM10, and gaseous precursors during the 1995 integrated monitoring study in central California. Journal of the Air & Waste Management Association 49, 16-24.
Chow, J.C., Watson, J.G., Lowenthal, D.H., Solomon, P.A., Magliano, K.L., Ziman, S.D., Richards, L.W., 1993. PM10 and PM2. 5 compositions in California′s San Joaquin Valley. Aerosol Science and Technology 18, 105-128.
Chow, J.C., Watson, J.G., Lu, Z., Lowenthal, D.H., Frazier, C.A., Solomon, P.A., Thuillier, R.H., Magliano, K., 1996. Descriptive analysis of PM2. 5 and PM10 at regionally representative locations during SJVAQS/AUSPEX. Atmospheric Environment 30, 2079-2112.
Christian, T.J., Yokelson, R., Cárdenas, B., Molina, L., Engling, G., Hsu, S.-C., 2010. Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics 10, 565-584.
Chu, S.-H., 2004. PM2. 5 episodes as observed in the speciation trends network. Atmospheric Environment 38, 5237-5246.
Chuang, M.-T., Chiang, P.-C., Chan, C.-C., Wang, C.-F., Chang, E., Lee, C.-T., 2008. The effects of synoptical weather pattern and complex terrain on the formation of aerosol events in the Greater Taipei area. Science of the total environment 399, 128-146.
Chuang, P., Duvall, R., Bae, M., Jefferson, A., Schauer, J., Yang, H., Yu, J., Kim, J., 2003. Observations of elemental carbon and absorption during ACE‐Asia and implications for aerosol radiative properties and climate forcing. Journal of Geophysical Research: Atmospheres 108.
Colbeck, I., Harrison, R.M., 1984. Ozone—secondary aerosol—visibility relationships in North-West England. Science of the Total Environment 34, 87-100.
Crouse, D.L., Peters, P.A., van Donkelaar, A., Goldberg, M.S., Villeneuve, P.J., Brion, O., Khan, S., Atari, D.O., Jerrett, M., Pope III, C.A., 2012. Risk of nonaccidental and cardiovascular mortality in relation to long-term exposure to low concentrations of fine particulate matter: a Canadian national-level cohort study. Environmental health perspectives 120, 708.
Daher, N., Ruprecht, A., Invernizzi, G., De Marco, C., Miller-Schulze, J., Heo, J.B., Shafer, M.M., Shelton, B.R., Schauer, J.J., Sioutas, C., 2012. Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmospheric Environment 49, 130-141.
Dambruoso, P., de Gennaro, G., Di Gilio, A., Palmisani, J., Tutino, M., 2014. The impact of infield biomass burning on PM levels and its chemical composition. Environ Sci Pollut Res Int 21, 13175-13185.
Dan, M., Zhuang, G., Li, X., Tao, H., Zhuang, Y., 2004. The characteristics of carbonaceous species and their sources in PM2. 5 in Beijing. Atmospheric Environment 38, 3443-3452.
Deng, C., Zhuang, G., Huang, K., Li, J., Zhang, R., Wang, Q., Liu, T., Sun, Y., Guo, Z., Fu, J., 2011. Chemical characterization of aerosols at the summit of Mountain Tai in Central East China. Atmospheric Chemistry and Physics 11, 7319-7332.
Deng, S., Shi, Y., Liu, Y., Zhang, C., Wang, X., Cao, Q., Li, S., Zhang, F., 2014. Emission characteristics of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Processing Technology 126, 469-475.
Deshmukh, D.K., Deb, M.K., Suzuki, Y., Kouvarakis, G.N., 2013. Water-soluble ionic composition of PM2. 5–10 and PM2. 5 aerosols in the lower troposphere of an industrial city Raipur, the eastern central India. Air Quality, Atmosphere & Health 6, 95-110.
Dominici, F., Greenstone, M., Sunstein, C.R., 2014. Particulate matter matters. Science 344, 257-259.
Draxler, R., Rolph, G., 2003. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model, NOAA Air Resources Laboratory, Silver Spring, MD. Access via NOAA ARL READY Website.
Draxler, R.R., Hess, G., 1998. An overview of the HYSPLIT_4 modelling system for trajectories. Australian meteorological magazine 47, 295-308.
Du Four, V.A., Van Larebeke, N., Janssen, C.R., 2004. Genotoxic and mutagenic activity of environmental air samples in Flanders, Belgium. Mutat Res 558, 155-167.
Duan, J., Tan, J., 2013. Atmospheric heavy metals and arsenic in China: situation, sources and control policies. Atmospheric Environment 74, 93-101.
Evans, J., van Donkelaar, A., Martin, R.V., Burnett, R., Rainham, D.G., Birkett, N.J., Krewski, D., 2013. Estimates of global mortality attributable to particulate air pollution using satellite imagery. Environmental research 120, 33-42.
Fabretti, J.-F., Sauret, N., Gal, J.-F., Maria, P.-C., Schärer, U., 2009. Elemental characterization and source identification of PM2. 5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France. Atmospheric Research 94, 320-329.
Fairley, D., 1999. Daily mortality and air pollution in Santa Clara County, California: 1989-1996. Environ Health Perspect 107, 637-641.
Fang, G.-C., Wu, Y.-S., Wen, C.-C., Huang, S.-H., Rau, J.-Y., 2006. Ambient air particulate concentrations and metallic elements principal component analysis at Taichung Harbor (TH) and WuChi Traffic (WT) near Taiwan Strait during 2004–2005. Journal of hazardous materials 137, 314-323.
Farao, C., Canepari, S., Perrino, C., Harrison, R.M., 2014. Sources of PM in an industrial area: comparison between receptor model results and semiempirical calculations of source contributions. Aerosol and Air Quality Research 14, 1558-1572.
Fleming, Z.L., Monks, P.S., Manning, A.J., 2012. Untangling the influence of air-mass history in interpreting observed atmospheric composition. Atmospheric Research 104, 1-39.
Fountoukis, C., Nenes, A., 2007. ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca 2+–Mg 2+–NH 4+–Na+–SO 4 2−–NO 3−–Cl−–H 2 O aerosols. Atmospheric Chemistry and Physics 7, 4639-4659.
Galindo, N., Yubero, E., Nicolás, J., Crespo, J., Pastor, C., Carratalá, A., Santacatalina, M., 2011. Water-soluble ions measured in fine particulate matter next to cement works. Atmospheric Environment 45, 2043-2049.
Gao, N., Cheng, M.-D., Hopke, P.K., 1993. Potential source contribution function analysis and source apportionment of sulfur species measured at Rubidoux, CA during the Southern California Air Quality Study, 1987. Analytica Chimica Acta 277, 369-380.
Gietl, J.K., Lawrence, R., Thorpe, A.J., Harrison, R.M., 2010. Identification of brake wear particles and derivation of a quantitative tracer for brake dust at a major road. Atmospheric Environment 44, 141-146.
Guaita, R., Pichiule, M., Maté, T., Linares, C., Díaz, J., 2011. Short-term impact of particulate matter (PM2. 5) on respiratory mortality in Madrid. International journal of environmental health research 21, 260-274.
Hafner, W.D., Hites, R.A., 2003. Potential sources of pesticides, PCBs, and PAHs to the atmosphere of the Great Lakes. Environmental science & technology 37, 3764-3773.
Han, J., Moon, K., Lee, S., Kim, Y., Ryu, S., Cliff, S., Yi, S., 2006. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia. Atmospheric Chemistry and Physics 6, 211-223.
Han, Y.-J., Holsen, T.M., Hopke, P.K., Cheong, J.-P., Kim, H., Yi, S.-M., 2004. Identification of source locations for atmospheric dry deposition of heavy metals during yellow-sand events in Seoul, Korea in 1998 using hybrid receptor models. Atmospheric Environment 38, 5353-5361.
Han, Y.-J., Kim, S.-R., Jung, J.-H., 2011. Long-term measurements of atmospheric PM 2.5 and its chemical composition in rural Korea. Journal of atmospheric chemistry 68, 281-298.
Hansen, J.e., Sato, M., Ruedy, R., Nazarenko, L., Lacis, A., Schmidt, G., Russell, G., Aleinov, I., Bauer, M., Bauer, S., 2005. Efficacy of climate forcings. Journal of Geophysical Research: Atmospheres 110.
Heintzenberg, J., 1989. Fine particles in the global troposphere A review. Tellus B: Chemical and Physical Meteorology 41, 149-160.
Heo, J.-B., Hopke, P., Yi, S.-M., 2009. Source apportionment of PM 2.5 in Seoul, Korea. Atmospheric Chemistry and Physics 9, 4957-4971.
Hitzenberger, R., Jennings, S., Larson, S., Dillner, A., Cachier, H., Galambos, Z., Rouc, A., Spain, T., 1999. Intercomparison of measurement methods for black carbon aerosols. Atmospheric environment 33, 2823-2833.
Hjortenkrans, D.S., Bergbäck, B.G., Häggerud, A.V., 2007. Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005. Environmental Science & Technology 41, 5224-5230.
Hopke, P., Barrie, L., Li, S.M., Cheng, M.D., Li, C., Xie, Y., 1995. Possible sources and preferred pathways for biogenic and non‐sea‐salt sulfur for the high Arctic. Journal of Geophysical Research: Atmospheres 100, 16595-16603.
Horemans, B., Krata, A., Buczynska, A.J., Dirtu, A.C., Van Meel, K., Van Grieken, R., Bencs, L., 2009. Major ionic species in size-segregated aerosols and associated gaseous pollutants at a coastal site on the Belgian North Sea. Journal of Environmental Monitoring 11, 670-677.
Hsu, C.-Y., Chiang, H.-C., Chen, M.-J., Chuang, C.-Y., Tsen, C.-M., Fang, G.-C., Tsai, Y.-I., Chen, N.-T., Lin, T.-Y., Lin, S.-L., 2017. Ambient PM2. 5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Science of the Total Environment 590, 204-214.
Hsu, C.-Y., Chiang, H.-C., Lin, S.-L., Chen, M.-J., Lin, T.-Y., Chen, Y.-C., 2016. Elemental characterization and source apportionment of PM10 and PM2. 5 in the western coastal area of central Taiwan. Science of the Total Environment 541, 1139-1150.
Hsu, S.C., Liu, S.C., Huang, Y.T., Chou, C.C., Lung, S., Liu, T.H., Tu, J.Y., Tsai, F., 2009. Long‐range southeastward transport of Asian biosmoke pollution: Signature detected by aerosol potassium in northern Taiwan. Journal of Geophysical Research: Atmospheres 114.
Hsu, S.C., Liu, S.C., Huang, Y.T., Lung, S.C.C., Tsai, F., Tu, J.Y., Kao, S.J., 2008. A criterion for identifying Asian dust events based on Al concentration data collected from northern Taiwan between 2002 and early 2007. Journal of Geophysical Research: Atmospheres 113.
Hsu, Y.-K., Holsen, T.M., Hopke, P.K., 2003. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmospheric Environment 37, 545-562.
Huang, R.-J., Zhang, Y., Bozzetti, C., Ho, K.-F., Cao, J.-J., Han, Y., Daellenbach, K.R., Slowik, J.G., Platt, S.M., Canonaco, F., 2014. High secondary aerosol contribution to particulate pollution during haze events in China. Nature 514, 218.
Hwang, I., Hopke, P.K., 2007. Estimation of source apportionment and potential source locations of PM2. 5 at a west coastal IMPROVE site. Atmospheric Environment 41, 506-518.
Hyslop, N.P., 2009. Impaired visibility: the air pollution people see. Atmospheric Environment 43, 182-195.
Ito, K., Mathes, R., Ross, Z., Nadas, A., Thurston, G., Matte, T., 2011. Fine particulate matter constituents associated with cardiovascular hospitalizations and mortality in New York City. Environ Health Perspect 119, 467-473.
Jacobson, M.Z., 2001. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695.
Janssen, N., Fischer, P., Marra, M., Ameling, C., Cassee, F., 2013. Short-term effects of PM2. 5, PM10 and PM2. 5–10 on daily mortality in the Netherlands. Science of the Total Environment 463, 20-26.
Jinhuan, Q., Liquan, Y., 2000. Variation characteristics of atmospheric aerosol optical depths and visibility in North China during 1980–1994. Atmospheric Environment 34, 603-609.
Jung, J., Lee, H., Kim, Y.J., Liu, X., Zhang, Y., Gu, J., Fan, S., 2009. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006 Pearl River Delta campaign. J Environ Manage 90, 3231-3244.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Karnae, S., John, K., 2011. Source apportionment of fine particulate matter measured in an industrialized coastal urban area of South Texas. Atmospheric Environment 45, 3769-3776.
Kfoury, A., Ledoux, F., Roche, C., Delmaire, G., Roussel, G., Courcot, D., 2016. PM2. 5 source apportionment in a French urban coastal site under steelworks emission influences using constrained non-negative matrix factorization receptor model. Journal of Environmental Sciences 40, 114-128.
Kim, E., Hopke, P.K., 2004. Improving source identification of fine particles in a rural northeastern US area utilizing temperature‐resolved carbon fractions. Journal of Geophysical Research: Atmospheres 109.
Kim, E., Hopke, P.K., 2008. Source characterization of ambient fine particles at multiple sites in the Seattle area. Atmospheric Environment 42, 6047-6056.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003a. Source identification of atlanta aerosol by positive matrix factorization. J Air Waste Manag Assoc 53, 731-739.
Kim, E., Hopke, P.K., Edgerton, E.S., 2003b. Source identification of Atlanta aerosol by positive matrix factorization. Journal of the Air & Waste Management Association 53, 731-739.
Kim, E., Hopke, P.K., Paatero, P., Edgerton, E.S., 2003c. Incorporation of parametric factors into multilinear receptor model studies of Atlanta aerosol. Atmospheric Environment 37, 5009-5021.
Kim, Y.J., Kim, K.W., Kim, S.D., Lee, B.K., Han, J.S., 2006. Fine particulate matter characteristics and its impact on visibility impairment at two urban sites in Korea: Seoul and Incheon. Atmospheric Environment 40, 593-605.
Kim, Y.P., Moon, K.-C., Lee, J.H., Baik, N.J., 1999. Concentrations of carbonaceous species in particles at Seoul and Cheju in Korea. Atmospheric Environment 33, 2751-2758.
Kloog, I., Ridgway, B., Koutrakis, P., Coull, B.A., Schwartz, J.D., 2013. Long-and short-term exposure to PM2. 5 and mortality: using novel exposure models. Epidemiology (Cambridge, Mass.) 24, 555.
Koo, B., Ansari, A.S., Pandis, S.N., 2003. Integrated approaches to modeling the organic and inorganic atmospheric aerosol components. Atmospheric Environment 37, 4757-4768.
Kuo, C.-Y., Cheng, F.-C., Chang, S.-Y., Lin, C.-Y., Chou, C.C., Chou, C.-H., Lin, Y.-R., 2013. Analysis of the major factors affecting the visibility degradation in two stations. Journal of the Air & Waste Management Association 63, 433-441.
Kuo, C.-Y., Lin, C.-Y., Huang, L.-M., Wang, S., Shieh, P.-F., Lin, Y.-R., Wang, J.-Y., 2010. Spatial variations of the aerosols in river-dust episodes in central Taiwan. Journal of hazardous materials 179, 1022-1030.
Löndahl, J., Massling, A., Pagels, J., Swietlicki, E., Vaclavik, E., Loft, S., 2007. Size-resolved respiratory-tract deposition of fine and ultrafine hydrophobic and hygroscopic aerosol particles during rest and exercise. Inhalation toxicology 19, 109-116.
Löndahl, J., Pagels, J., Swietlicki, E., Zhou, J., Ketzel, M., Massling, A., Bohgard, M., 2006. A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. Journal of Aerosol Science 37, 1152-1163.
Lee, C.-G., Yuan, C.-S., Chang, J.-C., Yuan, C., 2005. Effects of aerosol species on atmospheric visibility in Kaohsiung city, Taiwan. Journal of the Air & Waste Management Association 55, 1031-1041.
Lee, E., Chan, C.K., Paatero, P., 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong. Atmospheric Environment 33, 3201-3212.
Lee, J.H., Hopke, P.K., 2006. Apportioning sources of PM2. 5 in St. Louis, MO using speciation trends network data. Atmospheric Environment 40, 360-377.
Lee, J.H., Hopke, P.K., Turner, J.R., 2006. Source identification of airborne PM2. 5 at the St. Louis‐Midwest Supersite. Journal of Geophysical Research: Atmospheres 111.
Li, G., Zhang, R., Fan, J., Tie, X., 2005. Impacts of black carbon aerosol on photolysis and ozone. Journal of Geophysical Research: Atmospheres 110.
Li, Z., Hopke, P.K., Husain, L., Qureshi, S., Dutkiewicz, V.A., Schwab, J.J., Drewnick, F., Demerjian, K.L., 2004. Sources of fine particle composition in New York city. Atmospheric Environment 38, 6521-6529.
Lim, H.-J., Turpin, B.J., 2002. Origins of primary and secondary organic aerosol in Atlanta: Results of time-resolved measurements during the Atlanta supersite experiment. Environmental Science & Technology 36, 4489-4496.
Lin, J.J., 2002. Characterization of the major chemical species in PM2. 5 in the Kaohsiung City, Taiwan. Atmospheric Environment 36, 1911-1920.
Lin, Y.-C., Tsai, C.-J., Wu, Y.-C., Zhang, R., Chi, K.-H., Huang, Y.-T., Lin, S.-H., Hsu, S.-C., 2015. Characteristics of trace metals in traffic-derived particles in Hsuehshan Tunnel, Taiwan: size distribution, potential source, and fingerprinting metal ratio. Atmospheric Chemistry and Physics 15, 4117-4130.
Liu, W., Hopke, P.K., Han, Y.-j., Yi, S.-M., Holsen, T.M., Cybart, S., Kozlowski, K., Milligan, M., 2003. Application of receptor modeling to atmospheric constituents at Potsdam and Stockton, NY. Atmospheric Environment 37, 4997-5007.
Lowenthal, D.H., Zielinska, B., Chow, J.C., Watson, J.G., Gautam, M., Ferguson, D.H., Neuroth, G.R., Stevens, K.D., 1994. Characterization of heavy-duty diesel vehicle emissions. Atmospheric Environment 28, 731-743.
Lu, H.-Y., Lin, S.-L., Mwangi, J.K., Wang, L.-C., Lin, H.-Y., 2016. Characteristics and source apportionment of atmospheric PM2. 5 at a coastal city in southern Taiwan. Aerosol Air Qual. Res 16, 1022-1034.
Lyamani, H., Olmo, F., Alcántara, A., Alados-Arboledas, L., 2006. Atmospheric aerosols during the 2003 heat wave in southeastern Spain II: Microphysical columnar properties and radiative forcing. Atmospheric Environment 40, 6465-6476.
Madrigano, J., Kloog, I., Goldberg, R., Coull, B.A., Mittleman, M.A., Schwartz, J., 2013. Long-term exposure to PM2. 5 and incidence of acute myocardial infarction. Environmental health perspectives 121, 192.
Manoli, E., Voutsa, D., Samara, C., 2002. Chemical characterization and source identification/apportionment of fine and coarse air particles in Thessaloniki, Greece. Atmospheric Environment 36, 949-961.
Matthias-Maser, S., Jaenicke, R., 2000. The size distribution of primary biological aerosol particles in the multiphase atmosphere. Aerobiologia 16, 207-210.
McInnes, L., Covert, D., Quinn, P., Germani, M., 1994. Measurements of chloride depletion and sulfur enrichment in individual sea‐salt particles collected from the remote marine boundary layer. Journal of Geophysical Research: Atmospheres 99, 8257-8268.
Middleton, P., Kiang, C., Mohnen, V.A., 1980. Theoretical estimates of the relative importance of various urban sulfate aerosol production mechanisms. Atmospheric Environment (1967) 14, 463-472.
Minguillón, M., Querol, X., Baltensperger, U., Prévôt, A., 2012. Fine and coarse PM composition and sources in rural and urban sites in Switzerland: local or regional pollution? Science of the Total Environment 427, 191-202.
Mokhtar, M.M., Taib, R.M., Hassim, M.H., 2014. Understanding selected trace elements behavior in a coal-fired power plant in Malaysia for assessment of abatement technologies. Journal of the Air & Waste Management Association 64, 867-878.
Moldanová, J., Fridell, E., Popovicheva, O., Demirdjian, B., Tishkova, V., Faccinetto, A., Focsa, C., 2009. Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmospheric Environment 43, 2632-2641.
Moreno, T., Karanasiou, A., Amato, F., Lucarelli, F., Nava, S., Calzolai, G., Chiari, M., Coz, E., Artíñano, B., Lumbreras, J., 2013. Daily and hourly sourcing of metallic and mineral dust in urban air contaminated by traffic and coal-burning emissions. Atmospheric Environment 68, 33-44.
Morishita, M., Keeler, G.J., Wagner, J.G., Harkema, J.R., 2006. Source identification of ambient PM2. 5 during summer inhalation exposure studies in Detroit, MI. Atmospheric Environment 40, 3823-3834.
Nenes, A., Pandis, S.N., Pilinis, C., 1998. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquatic geochemistry 4, 123-152.
Nenes, A., Pandis, S.N., Pilinis, C., 1999. Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmospheric Environment 33, 1553-1560.
Norris, G., Duvall, R., Brown, S., Bai, S., 2014. EPA Positive Matrix Factorization (PMF) 5.0 fundamentals and User Guide Prepared for the US Environmental Protection Agency Office of Research and Development, Washington, DC. Inc., Petaluma.
Ogulei, D., Hopke, P.K., Zhou, L., Paatero, P., Park, S.S., Ondov, J.M., 2005. Receptor modeling for multiple time resolved species: the Baltimore supersite. Atmospheric Environment 39, 3751-3762.
Ogulei, D., Hopke, P.K., Zhou, L., Pancras, J.P., Nair, N., Ondov, J.M., 2006. Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmospheric Environment 40, 396-410.
Ostro, B., 1995. Fine particulate air pollution and mortality in two Southern California counties. Environ Res 70, 98-104.
Ostro, B., Feng, W.Y., Broadwin, R., Green, S., Lipsett, M., 2007. The effects of components of fine particulate air pollution on mortality in california: results from CALFINE. Environ Health Perspect 115, 13-19.
Paatero, P., 1997. Least squares formulation of robust non-negative factor analysis. Chemometrics and intelligent laboratory systems 37, 23-35.
Paatero, P., Tapper, U., 1994. Positive matrix factorization: A non‐negative factor model with optimal utilization of error estimates of data values. Environmetrics 5, 111-126.
Pachauri, T., Satsangi, A., Singla, V., Lakhani, A., Kumari, K.M., 2013. Characteristics and sources of carbonaceous aerosols in PM2. 5 during wintertime in Agra, India. Aerosol Air Qual. Res 13, 977-991.
Pacyna, J.M., 1998. Source inventories for atmospheric trace metals. Atmospheric particles, IUPAC series on analytical and physical chemistry of environmental systems 5, 385-423.
Pandis, S.N., Harley, R.A., Cass, G.R., Seinfeld, J.H., 1992. Secondary organic aerosol formation and transport. Atmospheric Environment. Part A. General Topics 26, 2269-2282.
Park, S.S., Ondov, J.M., Harrison, D., Nair, N.P., 2005. Seasonal and shorter-term variations in particulate atmospheric nitrate in Baltimore. Atmospheric Environment 39, 2011-2020.
Pathak, R.K., Wu, W.S., Wang, T., 2009. Summertime PM 2.5 ionic species in four major cities of China: nitrate formation in an ammonia-deficient atmosphere. Atmospheric Chemistry and Physics 9, 1711-1722.
Pereira, G., Belanger, K., Ebisu, K., Bell, M.L., 2013. Fine particulate matter and risk of preterm birth in Connecticut in 2000–2006: a longitudinal study. American journal of epidemiology 179, 67-74.
Perrino, C., Tiwari, S., Catrambone, M., Dalla Torre, S., Rantica, E., Canepari, S., 2011. Chemical characterization of atmospheric PM in Delhi, India, during different periods of the year including Diwali festival. Atmospheric Pollution Research 2, 418-427.
Perrone, M., Becagli, S., Orza, J.G., Vecchi, R., Dinoi, A., Udisti, R., Cabello, M., 2013. The impact of long-range-transport on PM1 and PM2. 5 at a Central Mediterranean site. Atmospheric environment 71, 176-186.
Pey, J., Querol, X., Alastuey, A., 2009. Variations of levels and composition of PM10 and PM2. 5 at an insular site in the Western Mediterranean. Atmospheric Research 94, 285-299.
Pey, J., Querol, X., Alastuey, A., 2010. Discriminating the regional and urban contributions in the North-Western Mediterranean: PM levels and composition. Atmospheric Environment 44, 1587-1596.
Pinkerton, K.E., Green, F.H., Saiki, C., Vallyathan, V., Plopper, C.G., Gopal, V., Hung, D., Bahne, E.B., Lin, S.S., Menache, M.G., Schenker, M.B., 2000. Distribution of particulate matter and tissue remodeling in the human lung. Environ Health Perspect 108, 1063-1069.
Pio, C., Cerqueira, M., Harrison, R.M., Nunes, T., Mirante, F., Alves, C., Oliveira, C., de la Campa, A.S., Artíñano, B., Matos, M., 2011. OC/EC ratio observations in Europe: Re-thinking the approach for apportionment between primary and secondary organic carbon. Atmospheric Environment 45, 6121-6132.
Pio, C.A., Castro, L.M., Cerqueira, M.A., Santos, I.M., Belchior, F., Salgueiro, M.L., 1996. Source assessment of particulate air pollutants measured at the southwest European coast. Atmospheric Environment 30, 3309-3320.
Pio, C.A., Harrison, R.M., 1987a. The equilibrium of ammonium chloride aerosol with gaseous hydrochloric acid and ammonia under tropospheric conditions. Atmospheric Environment (1967) 21, 1243-1246.
Pio, C.A., Harrison, R.M., 1987b. Vapour pressure of ammonium chloride aerosol: effect of temperature and humidity. Atmospheric Environment (1967) 21, 2711-2715.
Polidori, A., Turpin, B.J., Lim, H.-J., Cabada, J.C., Subramanian, R., Pandis, S.N., Robinson, A.L., 2006. Local and regional secondary organic aerosol: Insights from a year of semi-continuous carbon measurements at Pittsburgh. Aerosol Science and Technology 40, 861-872.
Polissar, A., Hopke, P., Paatero, P., Kaufmann, Y., Hall, D., Bodhaine, B., Dutton, E., Harris, J., 1999. The aerosol at Barrow, Alaska: long-term trends and source locations. Atmospheric Environment 33, 2441-2458.
Polissar, A.V., Hopke, P.K., Harris, J.M., 2001a. Source regions for atmospheric aerosol measured at Barrow, Alaska. Environmental science & technology 35, 4214-4226.
Polissar, A.V., Hopke, P.K., Poirot, R.L., 2001b. Atmospheric aerosol over Vermont: chemical composition and sources. Environmental science & technology 35, 4604-4621.
Querol, X., Alastuey, A., Viana, M., Moreno, T., Reche, C., Minguillón, M., Ripoll, A., Pandolfi, M., Amato, F., Karanasiou, A., 2013. Variability of carbonaceous aerosols in remote, rural, urban and industrial environments in Spain: implications for air quality policy. Atmospheric Chemistry and Physics 13, 6185-6206.
Querol, X., Viana, M., Alastuey, A., Amato, F., Moreno, T., Castillo, S., Pey, J., De la Rosa, J., De La Campa, A.S., Artíñano, B., 2007. Source origin of trace elements in PM from regional background, urban and industrial sites of Spain. Atmospheric Environment 41, 7219-7231.
Rahn, K.A., 1999. A graphical technique for determining major components in a mixed aerosol. I. Descriptive aspects. Atmospheric Environment 33, 1441-1455.
Ram, K., Sarin, M., 2011. Day–night variability of EC, OC, WSOC and inorganic ions in urban environment of Indo-Gangetic Plain: implications to secondary aerosol formation. Atmospheric Environment 45, 460-468.
Ravishankara, A., 1997. Heterogeneous and multiphase chemistry in the troposphere. Science 276, 1058-1065.
Reff, A., Bhave, P.V., Simon, H., Pace, T.G., Pouliot, G.A., Mobley, J.D., Houyoux, M., 2009. Emissions inventory of PM2. 5 trace elements across the United States. Environmental science & technology 43, 5790-5796.
Reff, A., Eberly, S.I., Bhave, P.V., 2007. Receptor modeling of ambient particulate matter data using positive matrix factorization: review of existing methods. Journal of the Air & Waste Management Association 57, 146-154.
Ross, M.A., 2009. Integrated science assessment for particulate matter. US Environmental Protection Agency: Washington DC, USA, 61-161.
Russell, M., Allen, D.T., Collins, D.R., Fraser, M.P., 2004. Daily, Seasonal, and Spatial Trends in PM2. 5 Mass and Composition in Southeast Texas Special Issue of Aerosol Science and Technology on Findings from the Fine Particulate Matter Supersites Program. Aerosol Science and Technology 38, 14-26.
Sörme, L., Bergbäck, B., Lohm, U., 2001. Goods in the anthroposphere as a metal emission source a case study of Stockholm, Sweden. Water, air and soil pollution: Focus 1, 213-227.
Sahu, M., Hu, S., Ryan, P.H., Le Masters, G., Grinshpun, S.A., Chow, J.C., Biswas, P., 2011. Chemical compositions and source identification of PM2. 5 aerosols for estimation of a diesel source surrogate. Science of the Total Environment 409, 2642-2651.
Salvador, P., Artı́ñano, B., Alonso, D.G., Querol, X., Alastuey, A., 2004. Identification and characterisation of sources of PM10 in Madrid (Spain) by statistical methods. Atmospheric Environment 38, 435-447.
Samara, C., Kouimtzis, T., Tsitouridou, R., Kanias, G., Simeonov, V., 2003. Chemical mass balance source apportionment of PM10 in an industrialized urban area of Northern Greece. Atmospheric environment 37, 41-54.
Samara, C., Tsitouridou, R., 2000. Fine and coarse ionic aerosol components in relation to wet and dry deposition. Water, air, and soil pollution 120, 71-88.
Schaap, M., Loon, M.v., Ten Brink, H., Dentener, F., Builtjes, P., 2004. Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmospheric Chemistry and Physics 4, 857-874.
Schauer, J.J., Kleeman, M.J., Cass, G.R., Simoneit, B.R., 2002. Measurement of emissions from air pollution sources. 5. C1− C32 organic compounds from gasoline-powered motor vehicles. Environmental science & technology 36, 1169-1180.
Schauer, J.J., Lough, G.C., Shafer, M.M., Christensen, W.F., Arndt, M.F., DeMinter, J.T., Park, J., 2006. Characterization of metals emitted from motor vehicles. Research report (Health Effects Institute), 1-76; discussion 77-88.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric chemistry and physics: from air pollution to climate change, Atmospheric chemistry and physics: from air pollution to climate change. Publisher: New York, NY: Wiley, 1998 Physical description: xxvii, 1326 p. A Wiley-Interscience Publication. ISBN: 0471178152.
Seinfeld, J.H., Pandis, S.N., 2012. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons.
Sharma, M., Agarwal, A.K., Bharathi, K., 2005. Characterization of exhaust particulates from diesel engine. Atmospheric Environment 39, 3023-3028.
Sharma, S.K., Sharma, A., Saxena, M., Choudhary, N., Masiwal, R., Mandal, T.K., Sharma, C., 2016. Chemical characterization and source apportionment of aerosol at an urban area of Central Delhi, India. Atmospheric Pollution Research 7, 110-121.
Sheesley, R.J., Nallathamby, P.D., Surratt, J.D., Lee, A., Lewandowski, M., Offenberg, J.H., Jaoui, M., Kleindienst, T.E., 2017. Constraints on primary and secondary particulate carbon sources using chemical tracer and 14C methods during CalNex-Bakersfield. Atmospheric Environment 166, 204-214.
Simoneit, B.R., 2002. Biomass burning—a review of organic tracers for smoke from incomplete combustion. Applied Geochemistry 17, 129-162.
Song, X.-H., Polissar, A.V., Hopke, P.K., 2001. Sources of fine particle composition in the northeastern US. Atmospheric Environment 35, 5277-5286.
Song, Y., Zhang, Y., Xie, S., Zeng, L., Zheng, M., Salmon, L.G., Shao, M., Slanina, S., 2006. Source apportionment of PM2. 5 in Beijing by positive matrix factorization. Atmospheric Environment 40, 1526-1537.
Squizzato, S., Masiol, M., Brunelli, A., Pistollato, S., Tarabotti, E., Rampazzo, G., Pavoni, B., 2012a. Factors determining the formation of secondary inorganic aerosol: a case study in the Po Valley (Italy). Atmospheric Chemistry & Physics Discussions 12.
Squizzato, S., Masiol, M., Innocente, E., Pecorari, E., Rampazzo, G., Pavoni, B., 2012b. A procedure to assess local and long-range transport contributions to PM2. 5 and secondary inorganic aerosol. Journal of Aerosol Science 46, 64-76.
Srinivas, B., Sarin, M., 2014. PM2. 5, EC and OC in atmospheric outflow from the Indo-Gangetic Plain: Temporal variability and aerosol organic carbon-to-organic mass conversion factor. Science of The Total Environment 487, 196-205.
Stelson, A., Seinfeld, J.H., 1982. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmospheric Environment 16, 983-992.
Sternbeck, J., Sjödin, Å., Andréasson, K., 2002. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment 36, 4735-4744.
Strader, R., Lurmann, F., Pandis, S.N., 1999. Evaluation of secondary organic aerosol formation in winter. Atmospheric Environment 33, 4849-4863.
Tang, I.N., Munkelwitz, H.R., 1993. Composition and temperature dependence of the deliquescence properties of hygroscopic aerosols. Atmospheric Environment. Part A. General Topics 27, 467-473.
Taylor, S., 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et cosmochimica acta 28, 1273-1285.
Theodosi, C., Grivas, G., Zarmpas, P., Chaloulakou, A., Mihalopoulos, N., 2011. Mass and chemical composition of size-segregated aerosols (PM 1, PM 2.5, PM 10) over Athens, Greece: local versus regional sources. Atmospheric Chemistry and Physics 11, 11895-11911.
Tian, H., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W., Hao, J., 2012. Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China. Atmospheric Environment 50, 157-163.
Tian, H., Wang, Y., Xue, Z., Cheng, K., Qu, Y., Chai, F., Hao, J., 2010. Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007. Atmospheric Chemistry and Physics 10, 11905-11919.
Tian, Y.-Z., Shi, G.-L., Huang-Fu, Y.-Q., Song, D.-L., Liu, J.-Y., Zhou, L.-D., Feng, Y.-C., 2016. Seasonal and regional variations of source contributions for PM10 and PM2. 5 in urban environment. Science of the Total Environment 557, 697-704.
Tiwari, S., Hopke, P.K., Pipal, A.S., Srivastava, A.K., Bisht, D.S., Tiwari, S., Singh, A.K., Soni, V.K., Attri, S.D., 2015. Intra-urban variability of particulate matter (PM2. 5 and PM10) and its relationship with optical properties of aerosols over Delhi, India. Atmospheric Research 166, 223-232.
Tiwari, S., Pervez, S., Cinzia, P., Bisht, D.S., Kumar, A., Chate, D., 2013. Chemical characterization of atmospheric particulate matter in Delhi, India, Part II: Source apportionment studies using PMF 3.0. Sustainable Environment Research 23, 295-306.
Tsai, J.-H., Lin, K.-H., Chen, C.-Y., Ding, J.-Y., Choa, C.-G., Chiang, H.-L., 2007. Chemical constituents in particulate emissions from an integrated iron and steel facility. Journal of Hazardous Materials 147, 111-119.
Tsai, Y.I., Chen, C.-L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2. 5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Turpin, B.J., Cary, R., Huntzicker, J., 1990. An in situ, time-resolved analyzer for aerosol organic and elemental carbon. Aerosol Science and Technology 12, 161-171.
Turpin, B.J., Huntzicker, J.J., 1991. Secondary formation of organic aerosol in the Los Angeles Basin: a descriptive analysis of organic and elemental carbon concentrations. Atmospheric Environment. Part A. General Topics 25, 207-215.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of primary and secondary organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Turpin, B.J., Huntzicker, J.J., Hering, S.V., 1994. Investigation of organic aerosol sampling artifacts in the Los Angeles Basin. Atmospheric Environment 28, 3061-3071.
Turpin, B.J., Saxena, P., Andrews, E., 2000. Measuring and simulating particulate organics in the atmosphere: problems and prospects. Atmospheric Environment 34, 2983-3013.
Ueda, H., Takemoto, T., Kim, Y.P., Sha, W., 2000. Behaviors of volatile inorganic components in urban aerosols. Atmospheric Environment 34, 353-361.
Uygur, N., Karaca, F., Alagha, O., 2010. Prediction of sources of metal pollution in rainwater in Istanbul, Turkey using factor analysis and long-range transport models. Atmospheric research 95, 55-64.
van Eeden, S.F., Yeung, A., Quinlam, K., Hogg, J.C., 2005. Systemic response to ambient particulate matter: relevance to chronic obstructive pulmonary disease. Proc Am Thorac Soc 2, 61-67.
Viana, M., Kuhlbusch, T., Querol, X., Alastuey, A., Harrison, R., Hopke, P., Winiwarter, W., Vallius, M., Szidat, S., Prévôt, A., 2008a. Source apportionment of particulate matter in Europe: a review of methods and results. Journal of aerosol science 39, 827-849.
Viana, M., López, J., Querol, X., Alastuey, A., García-Gacio, D., Blanco-Heras, G., López-Mahía, P., Piñeiro-Iglesias, M., Sanz, M., Sanz, F., 2008b. Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment 42, 1941-1957.
Viana, M., Maenhaut, W., Chi, X., Querol, X., Alastuey, A., 2007. Comparative chemical mass closure of fine and coarse aerosols at two sites in south and west Europe: implications for EU air pollution policies. Atmospheric Environment 41, 315-326.
Viidanoja, J., Sillanpää, M., Laakia, J., Kerminen, V.-M., Hillamo, R., Aarnio, P., Koskentalo, T., 2002. Organic and black carbon in PM2. 5 and PM10: 1 year of data from an urban site in Helsinki, Finland. Atmospheric Environment 36, 3183-3193.
Waked, A., Favez, O., Alleman, L., Piot, C., Petit, J.-E., Delaunay, T., Verlinden, E., Golly, B., Besombes, J.-L., Jaffrezo, J.-L., 2014. Source apportionment of PM 10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions. Atmospheric Chemistry and Physics 14, 3325-3346.
Wang, G., Zhao, J., Jiang, R., Song, W., 2015. Rat lung response to ozone and fine particulate matter (PM2. 5) exposures. Environmental toxicology 30, 343-356.
Wang, H., Kawamura, K., Shooter, D., 2005. Carbonaceous and ionic components in wintertime atmospheric aerosols from two New Zealand cities: Implications for solid fuel combustion. Atmospheric Environment 39, 5865-5875.
Wang, H., Shooter, D., 2002. Coarse–fine and day–night differences of water-soluble ions in atmospheric aerosols collected in Christchurch and Auckland, New Zealand. Atmospheric Environment 36, 3519-3529.
Wang, Y., Zhang, X., Draxler, R.R., 2009. TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data. Environmental Modelling & Software 24, 938-939.
Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., An, Z., 2006. The ion chemistry, seasonal cycle, and sources of PM2. 5 and TSP aerosol in Shanghai. Atmospheric Environment 40, 2935-2952.
Watson, J.G., 2002. Visibility: science and regulation. J Air Waste Manag Assoc 52, 628-713.
Watson, J.G., Chow, J.C., Lowenthal, D.H., Pritchett, L.C., Frazier, C.A., Neuroth, G.R., Robbins, R., 1994a. Differences in the carbon composition of source profiles for diesel-and gasoline-powered vehicles. Atmospheric Environment 28, 2493-2505.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., Ashbaugh, L.L., 1994b. Chemical mass balance source apportionment of PM10 during the Southern California Air Quality Study. Aerosol Science and Technology 21, 1-36.
Weckwerth, G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmospheric environment 35, 5525-5536.
World Health, O., 2000. Air quality guidelines for Europe. WHO Reg Publ Eur Ser, V-X, 1-273.
Wu, P.-M., Okada, K., 1994. Nature of coarse nitrate particles in the atmosphere—a single particle approach. Atmospheric Environment 28, 2053-2060.
Wyers, G., Duyzer, J., 1997. Micrometeorological measurement of the dry deposition flux of sulphate and nitrate aerosols to coniferous forest. Atmospheric Environment 31, 333-343.
Xia, L., Gao, Y., 2011. Characterization of trace elements in PM2. 5 aerosols in the vicinity of highways in northeast New Jersey in the US east coast. Atmospheric Pollution Research 2, 34-44.
Xu, D., Huang, N., Wang, Q., Liu, H., 2008. Study of ambient PM2. 5 on the influence of the inflammation injury and the immune function of subchronic exposure rats. Wei sheng yan jiu= Journal of hygiene research 37, 423-428.
Xu, X., Akhtar, U., 2009. Identification of potential regional sources of atmospheric total gaseous mercury in Windsor, Ontario, Canada using hybrid receptor modeling. Atmospheric Chemistry & Physics Discussions 9.
Yao, L., Yang, L., Yuan, Q., Yan, C., Dong, C., Meng, C., Sui, X., Yang, F., Lu, Y., Wang, W., 2016. Sources apportionment of PM2. 5 in a background site in the North China Plain. Science of the Total Environment 541, 590-598.
Yao, X., Chan, C.K., Fang, M., Cadle, S., Chan, T., Mulawa, P., He, K., Ye, B., 2002. The water-soluble ionic composition of PM2. 5 in Shanghai and Beijing, China. Atmospheric Environment 36, 4223-4234.
Yao, X., Zhang, L., 2012. Chemical processes in sea-salt chloride depletion observed at a Canadian rural coastal site. Atmospheric environment 46, 189-194.
Yongming, H., Peixuan, D., Junji, C., Posmentier, E.S., 2006. Multivariate analysis of heavy metal contamination in urban dusts of Xi′an, Central China. Science of the total environment 355, 176-186.
Zeka, A., Zanobetti, A., Schwartz, J., 2005. Short term effects of particulate matter on cause specific mortality: effects of lags and modification by city characteristics. Occupational and environmental medicine 62, 718-725.
Zhang, R., Jing, J., Tao, J., Hsu, S.-C., Wang, G., Cao, J., Lee, C.S.L., Zhu, L., Chen, Z., Zhao, Y., 2013. Chemical characterization and source apportionment of PM 2.5 in Beijing: seasonal perspective. Atmospheric Chemistry and Physics 13, 7053-7074.
Zhang, Y.-x., Min, S., Zhang, Y.-h., Zeng, L.-m., He, L.-y., Bin, Z., Wei, Y.-j., Zhu, X.-l., 2007. Source profiles of particulate organic matters emitted from cereal straw burnings. Journal of Environmental Sciences 19, 167-175.
Zhao, M., Huang, Z., Qiao, T., Zhang, Y., Xiu, G., Yu, J., 2015. Chemical characterization, the transport pathways and potential sources of PM2. 5 in Shanghai: Seasonal variations. Atmospheric Research 158, 66-78.
Zhao, W., Hopke, P.K., 2006. Source investigation for ambient PM 2.5 in Indianapolis, IN. Aerosol science and technology 40, 898-909.
Zheng, M., Salmon, L.G., Schauer, J.J., Zeng, L., Kiang, C., Zhang, Y., Cass, G.R., 2005. Seasonal trends in PM2. 5 source contributions in Beijing, China. Atmospheric Environment 39, 3967-3976.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Formation of nitrate and non-sea-salt sulfate on coarse particles. Atmospheric Environment 33, 4223-4233.
Zoller, W., Gordon, G., Gladney, E., Jones, A., 1973. The sources and distribution of vanadium in the atmosphere. ACS Publications.
Zíková, N., Wang, Y., Yang, F., Li, X., Tian, M., Hopke, P.K., 2016. On the source contribution to Beijing PM2. 5 concentrations. Atmospheric Environment 134, 84-95.
于培倫, 2010. 中部空品區天氣型態與二次氣膠之探討分析.
王偉, 2017. 2015-2016 年台灣都會區細懸浮微粒 (PM2.5) 成分濃度變化, 污染來源推估; Chemical characterization and source apportionment of the fine particulate matter (PM2.5) at Taiwan metropolises during 2015-2016. 國立中央大學.
李明曄, 2016. 臺灣地區細懸浮微粒減量對策之空氣品質改善有效性評析. 成功大學環境工程學系學位論文.
李崇德、周崇光、張士昱、蕭大智(2015) “細懸浮微粒(PM2.5)化學成分監測計畫”,期末報告(定稿本),環保署EPA-103-FA11-03-A119,台北,104年3月。
李崇德、周崇光、張士昱、蕭大智(2016) “104-105年細懸浮微粒(PM2.5)化學成分專案工作計畫”,期末報告(定稿本),環保署EPA-104-L102-02-103,台北,105年12月。
李崇德、周崇光、張士昱、蕭大智、許文昌(2017) “細懸浮微粒(PM2.5)化學成分監測及分析計畫”,期末報告(定稿本),環保署EPA-105-U102-03-A284,台北,106年12月。
指導教授 李崇德(Chung-Te Lee) 審核日期 2019-1-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明