博碩士論文 106322039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.144.42.196
姓名 郭恩典(En-Dian Kuo)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 運用訊號分析方法於地下水資源旱災韌性與風險評估
(Groundwater Drought Resilience and Risk Assessment by Using Signal Analysis Method)
相關論文
★ 結合資料探勘方法建立屏東平原含水層水文地質參數推估模式★ 探討颱風特性於農損及坡地災害遙測影像辨識之研究
★ 不同時空降雨型態對於地下水補注量之探討—以屏東平原為例★ 以訊號分析資料探勘方法探討PM2.5污染傳播時空特徵及相應之天氣條件
★ 探討都市熱島效應對臺北地區午後雷雨及地下水之影響★ 水文地質條件不確定性下的地下水時空變化模擬
★ 建立台灣北部交通與氣象因子對於空氣污染影響之機器學習模型★ 以深度學習方法建立地下水位預警之風險評估模型
★ 以機器學習預測海溫及熱帶氣旋特徵對於珊瑚白化之影響 – 以澎湖南方四島為例★ 探討臺灣地震活動特徵與環境變數相關性分析
★ 以機器學習方法建立巨觀尺度降雨氣候水資源推估模式
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在氣候變遷威脅及人為高度發展下,水資源短缺且分配不均,臺灣近年來旱災事件頻率越加頻繁且嚴重,面對旱災缺水的危機,解析地下水時空變異特性是必要,建立旱災風險的預警與地下水永續利用之機制為重要的防減災策略。本研究分析各地區在旱災下之脆弱度 (Vulnerability)、危害度 (Hazard)、暴露度 (Exposure) 及風險度 (Risk),以屏東平原為例,各風險度分別繪製成旱災風險分析圖,並建立風險指標及劃分成五個等級。脆弱度是應用訊號分析方法希爾伯特-黃轉換 (Hilbert Huang Transform, HHT) 解析地下水位時空變異特性及地下水之物理機制去量化敏感度 (Sensitivity) 及耐災力 (Resilience),危害度是以標準化降雨指標 (Standardized Precipitation Index, SPI) 分析各地區之乾旱特性及強度,暴露度是以人口密度去量化民生用水的危機,風險度是綜合各旱災風險度之結果。本研究結果整合各項旱災風險度建立旱災風險系統,有效解析旱災的風險,透過旱災風險度之結果歸類主要時頻特性區域、各地區地下水的可利用性及各風險,旱災風險由東往西南漸高,東區在乾旱事件發生時,各項風險度皆較低,此處地下水的可利用性較高,西南區域之各項風險度綜合為最高風險區,旱災強度強、耐災力弱及民生用水高,此區之地下水資源可調用性低。本研究可協助決策者判斷乾旱風險,作為旱災救援管理、旱災韌性與風險管理及地下水資源永續發展的重要依據。
摘要(英) Under the threat of climate change and high artificial development, water resources are scarce and unevenly distributed. The frequency of drought events in Taiwan has become more frequent and serious in recent years. In the face of the drought and water shortage crisis, it is necessary to analyze the spatial and temporal variability of groundwater and establish the risk of drought. The mechanism of early warning and sustainable use of groundwater is an important strategy for disaster prevention. This study analyzes the Vulnerability, Hazard, Exposure, and Risk of drought in each region. Taking Pingtung Plain as an example, each risk is plotted as a drought risk analysis, establish risk indicators and divide them into five levels. Vulnerability is the application of signal analysis method Hilbert Huang Transform (HHT) to analyze the spatiotemporal variation characteristics of groundwater level and the physical mechanism of groundwater to quantify Sensitivity and Resilience. Hazard is the application of the Standardized Precipitation Index (SPI) is used to analyze the drought characteristics and intensity of each region. Exposure is based on the population density to quantify the crisis of livelihood water. Risk is the result of integrating each risk of drought. The results of this study integrate the various drought risks to establish a drought risk system, effectively analyze the risk of drought and classify the main time-frequency characteristics, the availability of groundwater and the risks in each region through the drought risk map. The risk of drought is increasing from east to southwest. When the drought occurs in the eastern region, the risks are low, and the availability of groundwater is high. The comprehensive risk of the southwest region is the highest risk zone. The drought intensity is strong, disaster tolerance is weak, and the water for people′s livelihood is high. The availability of groundwater resources in this area is low. The result of this study can provide relevant units as an important basis for groundwater disaster prevention and backup well network planning reference, groundwater drought resilience and risk assessment.
關鍵字(中) ★ 災害風險評估與管理
★ 乾旱
★ 地下水資源
★ 訊號分析
★ 標準化降雨指標
關鍵字(英) ★ Risk Assessment and Management
★ Drought
★ Groundwater Resources
★ Hilbert Huang Transform
★ Standardized Precipitation Index
論文目次 目 錄
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
圖目錄 vi
表目錄 viii

第一章 緒論 1
1-1. 前言 1
1-2. 研究目的 4
1-3. 研究流程 6
1-4. 本文架構 7

第二章 文獻回顧 9
2-1. 地下水資源 9
2-2. 研究區域之研究 11
2-3. 訊號分析之應用 12
2-4. 乾旱及指標之應用 14
2-5. 災害風險評估 16

第三章 研究方法 19
3-1. 研究架構 19
3-2. 研究區域 20
3-2-1. 地理環境 21
3-2-2. 水文地質環境 22
3-2-3. 產業特性 27
3-3. 資料蒐集及概述 29
3-3-1. 觀測資料 30
3-3-2. 導水係數,透水係數,岩性及粒徑 34
3-4. 旱災風險評估方法 38
3-5. 危害度指標 42
3-5-1. 標準化降雨指標方法 42
3-5-2. 乾旱指標選定 48
3-5-3. 乾旱特性 51
3-5-4. 動態乾旱強度 (Dynamic Drought Intensity, DDI) 52
3-6. 脆弱度指標 53
3-6-1. 訊號分析方法 53
3-6-2. 希爾伯特-黃轉換 (Hilbert Huang Transform, HHT) 54
3-7. 暴露度指標 62

第四章 結果與討論 63
4-1. 危害度結果 63
4-2. 脆弱度結果 70
4-3. 暴露度結果 89
4-4. 旱災風險結果 92

第五章 結論與建議 97
參考文獻 100
評審意見回覆表 108
參考文獻 參考文獻
(WMO), W. M. O., & (GWP), G. W. P. (2014). National Drought Management Policy Guidelines: A Template for Action (D.A. Wilhite). Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1. WMO, Geneva, Switzerland and GWP, Stockholm, Sweden.
Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T. (2011). Land subsidence of Jakarta (Indonesia) and its relation with urban development. Natural Hazards, 59(3), 1753. Retrieved from https://doi.org/10.1007/s11069-011-9866-9. doi:10.1007/s11069-011-9866-9
Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions: with formulas, graphs, and mathematical tables (Vol. 55): Courier Corporation.
Akaike, H. (1969). Fitting autoregressive models for prediction. Annals of the institute of Statistical Mathematics, 21(1), 243-247.
Bloomfield, J., & Marchant, B. (2013). Analysis of groundwater drought building on the standardised precipitation index approach. Hydrology and Earth System Sciences, 17, 4769-4787.
Bonaccorso, B., Bordi, I., Cancelliere, A., Rossi, G., & Sutera, A. (2003). Spatial Variability of Drought: An Analysis of the SPI in Sicily. Water Resources Management, 17(4), 273-296. Retrieved from https://doi.org/10.1023/A:1024716530289. doi:10.1023/a:1024716530289
Bredehoeft, J. D. (1967). Response of well‐aquifer systems to earth tides. Journal of Geophysical Research, 72(12), 3075-3087.
Chen, C.-H., Wang, C.-H., Liang, W.-T., Yeh, Y.-H., Liu, J.-Y., Liu, C., . . . Wang, Y. (2010). Identification of earthquake signals from groundwater level records using the HHT method. Geophysical Journal International, 180(3), 1231-1241. Retrieved from https://doi.org/10.1111/j.1365-246X.2009.04473.x. doi:10.1111/j.1365-246X.2009.04473.x
Chen, C.-H., Wang, C.-H., Liu, J.-Y., Liu, C., Liang, W.-T., Yen, H.-Y., . . . Wang, Y. (2010). Identification of earthquake signals from groundwater level records using the HHT method. Geophysical Journal International, 180(3), 1231-1241. Retrieved from https://doi.org/10.1111/j.1365-246X.2009.04473.x. doi:10.1111/j.1365-246X.2009.04473.x
Co-operation, O. f. E., & Development. (2015). Drying wells, rising stakes: Towards sustainable agricultural groundwater use: OECD Publishing.
Cook, B. I., Ault, T. R., & Smerdon, J. E. (2015). Unprecedented 21st century drought risk in the American Southwest and Central Plains. Science Advances, 1(1), e1400082.
Cuthbert, M. O., Gleeson, T., Moosdorf, N., Befus, K. M., Schneider, A., Hartmann, J., & Lehner, B. (2019). Global patterns and dynamics of climate–groundwater interactions. Nature Climate Change, 9(2), 137-141. Retrieved from https://doi.org/10.1038/s41558-018-0386-4. doi:10.1038/s41558-018-0386-4
Dilley, M., Chen, R. S., Deichmann, U., Lerner-Lam, A. L., & Arnold, M. (2005). Natural Disaster Hotspots - A Global Risk Analysis: The World Bank.
Du, J., Fang, J., Xu, W., & Shi, P. (2013). Analysis of dry/wet conditions using the standardized precipitation index and its potential usefulness for drought/flood monitoring in Hunan Province, China. Stochastic Environmental Research and Risk Assessment, 27(2), 377-387. Retrieved from https://doi.org/10.1007/s00477-012-0589-6. doi:10.1007/s00477-012-0589-6
Field, C. B., Barros, V., Stocker, T. F., & Dahe, Q. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change: Cambridge University Press.
Forum, W. E. (2019). The Global Risks Report 2019 14th Edition.
Fried, J. J. (1975). Groundwater pollution (Vol. 4): Elsevier.
Golian, S., Mazdiyasni, O., & AghaKouchak, A. (2015). Trends in meteorological and agricultural droughts in Iran. Theoretical and Applied Climatology, 119(3), 679-688. Retrieved from https://doi.org/10.1007/s00704-014-1139-6. doi:10.1007/s00704-014-1139-6
Gusyev, M., Hasegawa, A., Magome, J., Kuribayashi, D., Sawano, H., & Lee, S. (2015). Drought assessment in the Pampanga River basin, the Philippines–Part 1: Characterizing a role of dams in historical droughts with standardized indices. Paper presented at the Proceedings of the Conference on Modelling and Simulation, Broadbeach, Australia.
Haddadi, E., R. Shabghard, M., M. Ettefagh, M., Bhattacharyya, A., Boothroyd, G., Castejon, M., . . . Choudhury, S. (1998). Modern Spectral Estimation: Theory and Application. Journal of Applied Sciences, 8(21), pp: 438-440-pp: 438-440.
Hayes, M., Svoboda, M., Wall, N., & Widhalm, M. (2011). The Lincoln Declaration on Drought Indices: Universal Meteorological Drought Index Recommended. Bulletin of the American Meteorological Society, 92(4), 485-488. Retrieved from https://journals.ametsoc.org/doi/abs/10.1175/2010BAMS3103.1. doi:10.1175/2010bams3103.1
Hayes, M. J., Svoboda, M. D., Wiihite, D. A., & Vanyarkho, O. V. (1999). Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society, 80(3), 429-438.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., . . . Liu, H. H. (1998). The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 454(1971), 903-995. Retrieved from https://royalsocietypublishing.org/doi/abs/10.1098/rspa.1998.0193 %X. doi:doi:10.1098/rspa.1998.0193
Huang, N. E., & Wu, Z. (2008). A review on Hilbert-Huang transform: Method and its applications to geophysical studies. Reviews of Geophysics, 46(2). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2007RG000228. doi:10.1029/2007rg000228
Ionita, M., Scholz, P., & Chelcea, S. (2016). Assessment of droughts in Romania using the Standardized Precipitation Index. Natural Hazards, 81(3), 1483-1498.
Janga Reddy, M., & Adarsh, S. (2016). Time–frequency characterization of sub-divisional scale seasonal rainfall in India using the Hilbert–Huang transform. Stochastic Environmental Research and Risk Assessment, 30(4), 1063-1085. Retrieved from https://doi.org/10.1007/s00477-015-1165-7. doi:10.1007/s00477-015-1165-7
Kogan, F. N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668.
McKee, T. B., Doesken, N. J., & Kleist, J. (1993). The relationship of drought frequency and duration to time scales. Paper presented at the Proceedings of the 8th Conference on Applied Climatology.
Mishra, A., & Desai, V. (2005). Drought forecasting using stochastic models. Stochastic Environmental Research and Risk Assessment, 19(5), 326-339.
Nalbantis, I., & Tsakiris, G. (2009). Assessment of Hydrological Drought Revisited. Water Resources Management, 23(5), 881-897. Retrieved from https://doi.org/10.1007/s11269-008-9305-1. doi:10.1007/s11269-008-9305-1
Narasimhan, B., & Srinivasan, R. (2005). Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring. Agricultural and Forest Meteorology, 133(1-4), 69-88.
Oh, Y.-Y., Yun, S.-T., Yu, S., & Hamm, S.-Y. (2017). The combined use of dynamic factor analysis and wavelet analysis to evaluate latent factors controlling complex groundwater level fluctuations in a riverside alluvial aquifer. Journal of Hydrology, 555, 938-955. Retrieved from http://www.sciencedirect.com/science/article/pii/S0022169417307473. doi:https://doi.org/10.1016/j.jhydrol.2017.10.070
Oki, T., & Kanae, S. (2006). Global Hydrological Cycles and World Water Resources. Science, 313(5790), 1068-1072. Retrieved from http://science.sciencemag.org/content/sci/313/5790/1068.full.pdf. doi:10.1126/science.1128845
Organization, W. M. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland.
Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., . . . Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: Ipcc.
Pan, Y., Shen, W.-B., Ding, H., Hwang, C., Li, J., & Zhang, T. (2015). The quasi-biennial vertical oscillations at global GPS stations: Identification by ensemble empirical mode decomposition. Sensors, 15(10), 26096-26114.
Parry, M., Parry, M. L., Canziani, O., Palutikof, J., Van der Linden, P., & Hanson, C. (2007). Climate change 2007-impacts, adaptation and vulnerability: Working group II contribution to the fourth assessment report of the IPCC (Vol. 4): Cambridge University Press.
Rao, A. R., & Hsu, E.-C. (2008). Hilbert-Huang transform analysis of hydrological and environmental time series (Vol. 60): Springer Science & Business Media.
Roeloffs, E. A. (1988). Hydrologic precursors to earthquakes: A review. Pure and Applied Geophysics, 126(2-4), 177-209.
Seiler, R., Hayes, M., & Bressan, L. (2002). Using the standardized precipitation index for flood risk monitoring. International Journal of Climatology, 22(11), 1365-1376.
Shafer, B. (1982). Developemnet of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Paper presented at the Proceedings of the 50th Annual Western Snow Conference, Colorado State University, Fort Collins, 1982.
Shafer, B. A., & Dezman, L. E. (1982). Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. In 50th Annual Western Snow Conference. Reno, Nevada: Western Snow Conference.
Shiklomanov, I. A., & Rodda, J. C. (2004). World water resources at the beginning of the twenty-first century: Cambridge University Press.
Siracusano, G., Lamonaca, F., Tomasello, R., Garescì, F., Corte, A. L., Carnì, D. L., . . . Finocchio, G. (2016). A framework for the damage evaluation of acoustic emission signals through Hilbert–Huang transform. Mechanical Systems and Signal Processing, 75, 109-122. Retrieved from http://www.sciencedirect.com/science/article/pii/S0888327015005531. doi:https://doi.org/10.1016/j.ymssp.2015.12.004
Soualhi, A., Medjaher, K., & Zerhouni, N. (2015). Bearing Health Monitoring Based on Hilbert–Huang Transform, Support Vector Machine, and Regression. IEEE Transactions on Instrumentation and measurement, 64(1), 52-62. doi:10.1109/TIM.2014.2330494
Spinoni, J., Vogt, J. V., Naumann, G., Barbosa, P., & Dosio, A. (2018). Will drought events become more frequent and severe in Europe? International Journal of Climatology, 38(4), 1718-1736. Retrieved from https://rmets.onlinelibrary.wiley.com/doi/abs/10.1002/joc.5291. doi:10.1002/joc.5291
Studies, D. o. A. B. o. C. C. f. R., & Inc., S. V. P. o. R. (2015). Lloyd′s City Risk Index 2015-2025.
Svoboda, M., & Fuchs, B. (2016). Handbook of drought indicators and indices.
Svoboda, M., Hayes, M., & Wood, D. (2012). Standardized precipitation index user guide. World Meteorological Organization Geneva, Switzerland.
Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., van Beek, R., Wada, Y., . . . Treidel, H. (2012). Ground water and climate change. Nature Climate Change, 3, 322. Retrieved from https://doi.org/10.1038/nclimate1744. doi:10.1038/nclimate1744
Tsakiris, G., & Vangelis, H. (2005). Establishing a drought index incorporating evapotranspiration. European water, 9(10), 3-11.
Van der Kamp, G., & Gale, J. (1983). Theory of earth tide and barometric effects in porous formations with compressible grains. Water Resources Research, 19(2), 538-544.
Van Loon, A. F. (2015). Hydrological drought explained. Wiley Interdisciplinary Reviews: Water, 2(4), 359-392.
Van Loon, A. F., Stahl, K., Di Baldassarre, G., Clark, J., Rangecroft, S., Wanders, N., . . . Hannaford, J. (2016). Drought in a human-modified world: reframing drought definitions, understanding, and analysis approaches.
Vicente-Serrano, S. M., Beguería, S., & López-Moreno, J. I. (2010). A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of climate, 23(7), 1696-1718.
Vicente-Serrano, S. M., & López-Moreno, J. I. (2005). Hydrological response to different time scales of climatological drought: an evaluation of the Standardized Precipitation Index in a mountainous Mediterranean basin. Hydrology and Earth System Sciences Discussions, 9(5), 523-533.
Wada, Y., van Beek, L. P. H., van Kempen, C. M., Reckman, J. W. T. M., Vasak, S., & Bierkens, M. F. P. (2010). Global depletion of groundwater resources. Geophysical Research Letters, 37(20). Retrieved from https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL044571. doi:10.1029/2010gl044571
Water, U. (2018). 2018 UN World Water Development Report, Nature-based Solutions for Water.
Wayne, C. P. (1965). Meteorological drought. US weather bureau research paper, 58.
Wilhite, D. A., & Glantz, M. H. (1985). Understanding: the Drought Phenomenon: The Role of Definitions. Water International, 10(3), 111-120. Retrieved from https://doi.org/10.1080/02508068508686328. doi:10.1080/02508068508686328
Wilhite, D. A., Svoboda, M. D., & Hayes, M. J. (2007). Understanding the complex impacts of drought: A key to enhancing drought mitigation and preparedness. Water Resources Management, 21(5), 763-774. Retrieved from https://doi.org/10.1007/s11269-006-9076-5. doi:10.1007/s11269-006-9076-5
Wu, H., Svoboda, M. D., Hayes, M. J., Wilhite, D. A., & Wen, F. (2007). Appropriate application of the standardized precipitation index in arid locations and dry seasons. International Journal of Climatology, 27(1), 65-79.
Xu, H., Liu, J., Hu, H., & Zhang, Y. (2016). Wearable sensor-based human activity recognition method with multi-features extracted from Hilbert-Huang transform. Sensors, 16(12), 2048.
Yang, H., Wang, H., Fu, G., Yan, H., & Zhao, P. (2018). Evaluation of HHT approach for estimating agricultural drought trend and frequency based on modified soil water deficit index (MSWDI). Theoretical and Applied Climatology. Retrieved from https://doi.org/10.1007/s00704-018-2688-x. doi:10.1007/s00704-018-2688-x
Yu, H.-L., & Lin, Y.-C. (2015). Analysis of space–time non-stationary patterns of rainfall–groundwater interactions by integrating empirical orthogonal function and cross wavelet transform methods. Journal of Hydrology, 525, 585-597.
中央研究院環境變遷研究中心, & 國家災害防救科技中心. (2018). 臺灣氣候變遷科學報告2017 ‒ 物理現象與機制. 科技部「臺灣氣候變遷推估資訊與調適知識平台計畫」.
內政部. (2018). 全國國土計畫.
朱容練, 黃柏誠, 吳宜昭, 陳淡容, 林欣弘, 林冠伶, & 于宜強. (2018). 2018年台灣乾旱事件分析. 國家災害防救科技中心.
朱容練, 劉俊志, 林士堯, 朱吟晨, 陳韻如, & 陳永明. (2015). 乾旱監測與預警系統建置. 國家災害防救科技中心.
江崇榮, 黃智昭, 陳瑞娥, & 費立沅. (2004). 屏東平原地下水補注量及抽水量之評估 經濟部中央地質調查所彙刊, 第十九號, 21-51.
林棽, 劉紹臣, & 林沛練. (2014). 臺灣地區乾旱問題之分析. Paper presented at the Weather Analysis and Forecasting.
林裕彬, 蘇明道, 鄭克聲, 張良正, 洪念民, & 何智超. (2013). 臺灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究. 經濟部水利署水利規劃試驗所.
屏東縣政府城鄉發展處. (2011). 屏東縣農村再生總體計畫. 屏東縣政府城鄉發展處.
徐年盛, 江崇榮, 汪中和, 劉振宇, 劉宏仁, & 黃建霖. (2011). 地下水系統水平衡分析與補注源水量推估之研究. Journal of the Chinese Institute of Civil and Hydraulic Engineering, 23(4), 347-357.
國立臺灣大學氣候天氣災害研究中心. (2012). 氣候變遷下台灣地區地下水資源補注之影響評估. 經濟部水利署.
國家災害防救科技中心, 陳韻如, 陳偉柏, 林又青, 劉佩鈴, 施虹如, . . . 張志新. (2014). 氣候變遷衝擊下災害風險地圖 (Risk Maps of Disaster under Climate Change). 國家災害防救科技中心.
張良正, 張竝瑜, 陳文福, 江崇榮, 王詠絢, 黃智昭, . . . 王雲直. (2012). 臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置-屏東平原. 經濟部中央地質調查所, 209.
游保杉, & 陳憲宗. (2008). 氣候變遷對災害防治衝擊調適與因應策略整合研究---子計畫: 台灣地區乾旱變異趨勢與辨識研究 (III). 行政院國家科學委員會專題研究計畫 成果報告.
經濟部中央地質調查所. (2014). 地下水補注地質敏感區劃定計畫 G0002屏東平原. 經濟部中央地質調查所, 54.
經濟部水利署. (2012). 氣候變遷對中部地區水旱災災害防救衝擊評估及調適策略擬定(1/2).
經濟部水利署. (2013a). 氣候變遷進行式 雨,超載了!. 經濟部水利署電子報, 第0036期.
經濟部水利署. (2013b). 氣候變遷對中部地區水旱災災害防救衝擊評估及調適策略擬定(2/2).
經濟部水利署. (2016a). 氣候變遷下臺灣各地下水水資源區之地下水潛能衝擊分析. 經濟部水利署電子報, 第0168期.
經濟部水利署. (2016b). 臺灣水資源高風險地區調適指標研究. 經濟部水利署.
經濟部水利署. (2017a). 水利署年報(105年度). 經濟部水利署.
經濟部水利署. (2017b). 回顧七十 前瞻永續-水利故事集.
經濟部水利署. (2019). 在不增加用戶水費之下達成調高水價及節約用水之方法. 經濟部水利署電子報, 第 0321 期.
經濟部水利署, & 黃紹揚. (2016). 臺灣地區乾旱時期地下水備援用水評估系統建置. 經濟部水利署(218).
經濟部水利署水文組. (2016). 屏東平原水文特徵分析與耦合地表地下水數值模擬應用. 經濟部水利署電子報, 第0189期.
經濟部水利署水利規劃試驗所. 水資源概況. https://www.wrap.gov.tw/pro13.aspx?type=0101010000.
經濟部水資源統一規劃委員會. (1991). 台灣乾旱週期之研究.
廖玲琬, 洪銘堅, 王逸民, 徐年盛, 游雅淳, & 劉宏仁. (2012). 以頻譜分析法評量地下水位時空變動. 工程環境會刊(28), 1-14.
指導教授 林遠見(Yuan-Chien Lin) 審核日期 2019-7-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明