博碩士論文 106322014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.224.52.108
姓名 吳守展(Shou-zjan Wu)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 高強度透水混凝土磨耗與堵塞維護之初步研究
(Abrasion resistance and clogging maintenance of High-strength pervious concrete)
相關論文
★ 變厚度X形消能裝置初步研究★ FRP筋對混凝土柱圍束效應之研究
★ 高強度鋼筋混凝土剪力牆連接梁耐震配筋之研究★ 高拉力SD690鋼筋截斷設計之研究
★ 高強度鋼筋混凝土梁構件耐震設計參數之研究★ 鋼筋混凝土梁疲勞行為之初步研究
★ 高拉力鋼筋混凝土滑移剪力設計之研究★ 鋼筋混凝土梁有斜向鋼筋配置之耐震性能提升研究
★ 非韌性鋼筋混凝土梁柱外接頭補強之研究★ 新澆置鋼筋混凝土梁受反覆荷重之影響
★ 非韌性鋼筋混凝土梁柱內接頭補強之研究★ 鋼筋混凝土擴柱補強工法對非韌性梁柱接頭耐震能力提升之探討
★ 雙層兩跨鋼筋混凝土抗彎構架耐震測試★ 受損RC梁柱接頭補強之耐震成效評估
★ 現有鋼筋混凝土建築物之耐震能力評估 ―以紐西蘭評估方法為基礎★ 桁架軟化模式應用於無水平箍筋梁柱接頭剪力及變形曲線預測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以蕭宛瑄[36]之高強度透水混凝土(HSP)配比將最大粒徑1分石(3.0mm)及1.2分石(3.6 mm)進行改良(調整夯實能量及強塑劑用量),並以28天強度高於42 MPa且孔隙率盡可能接近規範規定之15%為目標,與普通強度透水混凝土(NSP)配比及一般混凝土(CC)進行彈性模數、劈裂抗拉強度及耐磨抵抗能力之綜合比較,並提出√f’c與各試驗之關係式。且以面積"31×37 cm" 之鋪面試體觀察厚度10、15、20 cm對硫酸溶液之稀釋效果,最後以L. Chu & T. F. Fwa[4]堵塞試驗之砂土級配及數據歸納方式,對孔隙率較低之高強度透水混凝土鋪面進行砂土及廢油堵塞試驗。
試驗結果顯示配比改良方面,將φ"10×20" cm圓柱試體之夯實次數減少至40次,且調高強塑劑用量10~20%時,HSP配比28天強度可由42 MPa提升至53MPa,孔隙率可由6.85~7.33%提升至8.58~11.64%之成效。其中,無論配比改良與否,其彈性模數係數皆為3795左右,而破裂模數(modulus of rupture)約為0.63√f’c。磨損試驗方面,則以HSP齡期28天之累積磨損率表現最佳,皆低於一般混凝土累積磨損率0.5%以下,且骨材粒徑越大,磨損率越高。硫酸侵入試驗以鋪面厚度20cm表現最佳,可將稀釋硫酸溶液pH值由1.7提升6.0,且氫離子濃度大幅下降99%。廢油堵塞方面,選用流動性較高之廢機油模擬,且透水量測定方式容易將油膜浮出試體表面,因此廢油堵塞效果僅降低整體透水性能之9%左右。而砂土堵塞試驗於維護後發現,吸塵改善效率較佳,能恢復整體透水性能之60~75%,而高壓水柱僅改善整體透水性能之3.9~5.9%,推測為水柱將砂土打進孔隙深處堵塞所致。
摘要(英) This study improved the high strength pervious concrete (HSP) mixture of Xiao [32] by adjusting the compaction energy and the dosage of superplasticizer. This HSP aims to carry out 28-day strength above 42 MPa and porosity as close to 15% as possible to achieve the technical specifications. The HSP was tested against normal-strength pervious concrete (NSP) and conventional concrete (CC) samples. Some of the key tests were compressive strength, elastic modulus, splitting tensile strength and abrasion resistance, and proposed the relationship between √f′c with each test. The HSP pavement specimens, whose size was 31×37 cm with the thickness of 10, 15 and 20 cm, were to used measure the sulfuric acid dilution test. Experimental simulation of sand and oil clogging tests of HSP pavement specimens by using L. Chu & T. F. Fwa [4] method were under evaluation.
The test results show that the compaction energy of concrete cylinder 10 diameter x 20 cm reach 40 times, and the dosage of superplasticizer is increased by 10 to 20%, the 28-day compressive strength of HSP will increase from 42 MPa to 53 MPa and porosity will improve from 6.85~7.33% to 8.58~11.64%. Regardless of whether the concrete mixture is improved or not, the modulus of elasticity is about 3795, and the modulus of rupture is about 0.63√f’c. In terms of surface abrasion test, the abrasion resistance of HSP at 28 days is best, which is lower than the average concrete cumulative abrasion rate of 0.5%, and it also shows that the use of larger coarse aggregate in a mix tend to produce concrete of higher abrasion rate. The dilute sulfuric acid test performed best with a 20-cm thick HSP pavement. The pH of the diluted sulfuric acid solution was increased by 6.0 from 1.7, and the hydrogen ion concentration was greatly reduced by 99%. Pervious concrete can promote biodegradation of oil clogging test and due to the fact that measurement method easily floats the oil film out of the surface of specimen, the oil with high fluidity effect only reduces about 9% of the overall permeability. The sand and soil clogging results show that the HSP specimen had better resistance by vacuum sweeping and restored 60~75% of the overall permeability, while the high pressure washing only improved the permeability by 3.9~5.9%. It is presumed that the pressure washing caused sand and soil to penetrate into the pores of HSP specimen.
關鍵字(中) ★ 混凝土磨耗
★ 混凝土堵塞維護
★ 高強度透水混凝土
關鍵字(英)
論文目次 Abstract II
致謝 III
目錄 V
圖目錄 VIII
附圖 XIII
表目錄 XIV
附表 XV
第1章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
第2章 文獻回顧 3
2.1 多孔隙鋪面 3
2.1.1 排水性鋪面 3
2.1.2 透水性鋪面 4
2.1.3 排水性及透水性鋪面比較 5
2.2 多孔隙混凝土 7
2.2.1 透水混凝土 7
2.2.2 高強度透水混凝土 10
2.3 耐久性 13
2.3.1 透水混凝土表面磨損試驗 13
2.3.2 透水混凝土堵塞試驗 19
第3章 研究規劃與試驗方法 25
3.1 研究規劃與製作 25
3.2 試驗配比及編號 29
3.2.1 試驗配比 29
3.2.2 試體編號 30
3.3 試驗材料 31
3.3.1 骨材 31
3.3.2 II型水泥 32
3.3.3 矽灰 33
3.3.4 拌合水 34
3.3.5 強塑劑 34
3.4 材料基本試驗 35
3.4.1 篩分析 35
3.4.2 吸水率 37
3.5 試體製作 38
3.5.1 試體模具 39
3.5.2 夯錘 39
3.5.3 變速攪拌機 40
3.6 室內地水頭試驗及孔隙率 41
3.6.1 室內透水試驗儀 42
3.6.2 恆溫水槽 42
3.7 抗壓試驗、彈性模數及劈裂抗拉強度 43
3.7.1 抗壓試驗機 43
3.7.2 彈性模數應變環 44
3.7.3 TML 靜態資料擷取器(TDS 530) 45
3.8 磨損試驗 46
3.8.1 混凝土載重式旋轉磨損試驗機 47
3.8.2 洛杉磯磨損試驗儀 48
3.9 堵塞維護與污染試驗 49
3.9.1 砂土堵塞與維護 50
3.9.2 交通廢油 52
3.9.3 硫酸溶液 53
第4章 結果與討論 54
4.1 透水混凝土配比及工程性質 54
4.1.1 原配比抗壓強度及彈性模數 54
4.1.2 原配比透數係數與孔隙率 59
4.1.3 原配比劈裂抗拉強度 61
4.1.4 磨損抵抗能力 63
4.2 變數調整對工程性質之影響 73
4.2.1 調整搗實能量對7天齡期抗壓強度及孔隙率之影響 75
4.2.2 調整強塑劑用量對7天齡期抗壓強度、孔隙率及透水係數之影響 77
4.2.3 綜合變數調整後之抗壓強度、孔隙率及彈性模數 79
4.2.4 綜合變數調整後劈裂抗拉強度之比較 86
4.3 堵塞與汙染性試驗 89
4.3.1 硫酸溶液試驗 89
4.3.2 鋪面受砂土堵塞之觀察與維護成效 94
4.3.3 鋪面受砂土堵塞之預測模型 100
4.3.4 廢油侵入 103
第5章 結論與建議 105
5.1 結論 105
5.2 建議 109
參考文獻 111
附圖 116
附表 122
參考文獻 [1] Aamer Rafique Bhutta, M., Tsuruta, K., Mirza, J., “Evaluation of high-performance porous concrete properties”, Construction and Building Materials, Vol 31, pp. 67-73, 2012.
[2] Al-Manasir, A.A., Keil, L.D., “Physical properties of cement grout containing silica fume and superplasticizer”, ACI Materials Journal, Vol 89 (2), pp. 154-160, 1994.
[3] Asaeda, T., Ca, V.T., “Characteristics of permeable pavement during hot summer weather and impact on the thermal environment”, Building and Environment, Vol 35(4), pp.363-375, 2000.
[4] Chu, L., Fwa, T.F., “Laboratory Characterization of Clogging Potential of Porous Asphalt Mixtures”, TRR Journal of the Transportation Research Board, Vol 2672, pp.12-22, 2018.
[5] Dennis Vandegrift, Jr., Schindler, A.K., “The Effect of Test Cylinder Size on the Compressive Strength of Sulfur Capped Concrete Specimens”, Highway Research Center and Department of Civil Engineering at Auburn University,2006.
[6] Dong Q., Wu H., Huang B., Shu X., Wang K., “Development of a simple and fast test method for measuring the durability of Portland cement pervious concrete.” Portland Cement Association, PCA R&D Serial No. SN3149, 2010.
[7] Goodbrake, C. J., Young, J. F. “Reaction of Beta-Dicalcium Silicate and Tricalcium Silicate with Carbon Dioxide and Water Vapor”, Journal of the American Ceramic Society, 62(3-4), pp.168-171, 1979.
[8]Kevern, J. T., Wang, K., and Schaefer, V. R., “Effect of regime on pervious concrete abrasion resistance”, Advancements in pervious concrete technology, pp.85-100, 2008.
[9]Kevern, J. T., “Operation and Maintenance of Pervious Concrete Pavements”, Presented at 90th Annual Meeting of the Transportation Research Board, Washington, D.C., 2011.
[10]Kevern, J. T.,Sparks J. D., “Low-cost Technigues for Improving the surface Durability of Pervious Concrete”, Journal of the Transportation Research Board, No. 2342,pp.83-89,2013.
[11]Kia, A., Wong, H.S., Cheeseman, C.R., “Clogging in permeable concrete : A review”, Journal of the Environmental Management, Vol 193, pp.221-233, 2017.
[12]Papenfus, N. “Applying concrete technology to abrasion resistance”, Proceedings of the 7th International Conference on Concrete Block Paving, Sun City, South Africa, 2003.
[13] Scott, B. D., Safiuddin, Md., “Abrasion Resistance of Concrete – Design, Construction and Case Study”, Concr. Res. Lett, Vol 6 (3),pp.136-148,2015.
[14]Shamsai, A., Rahmani, K., Peroti, S., Rahemi, L. “The effect of water-cement ratio in compressive and abrasion strength of the nano silica concretes”, World Applied Sciences Journal 17 (4),pp.540-545,2012
[15]Wild, S., Sabir, B.B., Khatib, J.M., “Factors influencing strength development of concrete containing silica fume”, Cement and Concrete Research, Vol 25(7), pp.1567-1580, 1995.
[16]Zhong, R., Wille, K., “Compression response of normal and high strength pervious concrete”, Construction and Building Materials, Vol 109, pp.177-187, 2016.
[17] Zhong, R., Wille, K., “Material design and characterization of high performance pervious concrete”, Construction and Building Materials, Vol 98, pp.51-60, 2015.
[18] 王明倫,「透水混凝土設計品管應用之初步研究」,朝陽科技大學,碩士論文,2012年。
[19] 包春華,「透水混凝土應用於公路中之初步研究」,朝揚科技大學,碩士論文,2008年。
[20] 江佳良,「模擬透水混凝土應用在鋪面工程對於水質淨化之初步研究」,朝陽科技大學,碩士論文,2012年。
[21] 吳俊欣,「透水混凝土中添加化學摻料之研究」,逢甲大學土木工程學系,碩士論文,2013年。
[22] 宋中南、石雲興,「透水混凝土及其應用技術」,中國建築工業出版社,2011年。
[23] 林奕妤,「互鎖作用對多孔隙瀝青混凝土性質影響之研究」,國立中興大學,碩士論文,2014年。
[24] 林登峰、黃隆昇、王忠山、葉庭瑋,「市區道路鋪竹排水性鋪面長期成效之研究」,鋪面工程,第10卷,第1期,47-54頁,2012年。
[25] 姚志廷、葉榮晟、戴政安,「高性能透水鋪面綠建材評定基準與應用」,技師期刊,第70卷,73-78頁,2015年。
[26] 洪盟峰、黃兆龍,「透水性水泥混凝土性質與應用之探討」,德霖學報,第18卷,343-353頁,2004年。
[27] 徐震宇,「不同透水性鋪面材料對鋪面溫度影響之探討」,國立中央大學,碩士論文,2008年。
[28] 張道光、李明君、顏聰、邱垂德、李昭明、陳毓清,「高性能混凝土應用於交通工程之研究 – 透水混凝土(3/3)」,臺北市:交通部運研所,2008年。
[29] 張道光、李明君、顏聰、邱垂德、黃怡碩、童文志、何政翰、林岱瑋、陳靖宇、賴明志,「透水混凝土應用在港灣構造物設施與公路路面成效評估之研究(2/2)」,交通部運輸研究所(編號:99-H1DB005),臺北市:交通部運輸研究所,2011年。
[30] 陳彥翔,「多孔隙瀝青混凝土鋪面堵塞之定量分析與實驗室模擬」,國立成功大學,碩士論文,2007年。
[31] 陳惠珠,「添加卜作嵐材料與廢輪胎橡膠粉對水泥砂漿巨微觀影響之研究」,國立高雄應用科技大學,碩士論文,2011年。
[32] 黃兆龍,「混凝土性質與行為」,臺北市:詹氏書局,2005年。
[33] 廖文正、林致淳、詹穎雯,「台灣混凝土彈性模數建議公式研究」,結構工程,第31卷,第3期,5-31頁,2016年。
[34] 廖昱奇,「較高強度透水混凝土配比設計之研究」,逢甲大學土木工程學系碩專班,碩士論文,2008年。
[35] 蔡耀賢、林芳銘、陳振誠,「綠建材解說與評估手冊」,新北市:內政部建築研究所,2015年。
[36] 蕭宛瑄,「二氧化碳養護對高強度透水混凝土性質之影響」,國立中央大學,碩士論文,2018年。
[37] 羅心妤,「強塑劑質與量對混凝土性質之研究」,國立台北科技大學營建工程學系,碩士論文,2003年。
[38] 蘇南、林建志、楊鑫城,「矽灰、高嶺土及廢觸媒對強塑劑水泥砂漿性質影響比較」,中國土木水利工程學刊,第14卷 第2期,319-325頁,2002年。
指導教授 王勇智 審核日期 2019-8-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明