以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:21 、訪客IP:18.191.165.192
姓名 陳全彧(Chuan-Yu Chen) 查詢紙本館藏 畢業系所 土木工程學系 論文名稱
(A Road Toll Problem with Asymmetric Interactions of Different Vehicle Types)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 當未來自動駕駛車輛普及化,勢必會帶來相對應的影響,例如:自動駕駛車輛與手動駕駛車輛之間的非對稱交互影響。而為了維持道路服務品質,除了可透過高乘載管制與匝道管制外,亦可透過道路收費轉移壅塞路段流量,以維持道路服務品質。本研究透過兩階段求解方式探討於多車種(自動駕駛車輛與手動駕駛車輛)非對稱交互影響下的路段收費與路徑收費價格。結果顯示:(1) 路段收費價格高於路徑收費;(2) 於路段收費下,自動駕駛車輛的收費價格高於手動駕駛車輛;(3) 於路徑收費下,自動駕駛車輛的收費價格低於手動駕駛車輛。當未來政府推動自動化車輛相關政策時,可以路徑收費為參考,透過低收費之方式使民眾轉移使用自動駕駛車輛。 摘要(英) The autonomous vehicles (AVs) are getting more and more popular in recent years. As a result, asymmetric interactions between the AVs and manual vehicles can be easily observed and hence have certain impact on traffic flows. To maintain a required level of service, strategies such as high occupancy vehicle (HOV) and ramp metering have long been used. Moreover, when a toll is levied on either some links or full networks, travelers incurred with the toll would switch their route from currently congested links to less congested links so as to reduce their overall travel cost. This study uses two heuristics (link-based and path-based methods) instead for solving the multimodal link toll problem with asymmetric interactions. The results show that: (1) the toll under link-based toll is higher than path-based toll; (2) for link-based toll, the toll of AVs is higher than manual vehicles; (3) for path-based toll, the toll of AVs is lower than manual vehicles. When the government implement the fully automated traffic system, the path-based toll can be used as a reference to increase the willingness of people to use AVs by means of collecting lower tolls. 關鍵字(中) ★ 道路收費
★ 變分不等式
★ 多車種交通量指派關鍵字(英) ★ road toll
★ variational inequlity
★ multimodal traffic assignment論文目次 中文摘要 ............................................... i
Abstract ............................................. ii
誌謝 ................................................ iii
Table of Contents .................................... iv
List of Figures ...................................... vi
List of Tables ...................................... vii
1 Introduction ........................................ 1
2 Literature review ................................... 2
2.1 Asymmetric traffic assignment ..................... 2
2.2 Road toll ......................................... 2
2.3 The sensitivity analysis .......................... 3
2.4 Autonomous Vehicles ............................... 4
3 The multimodal traffic assignment model.................................................. 6
3.1 The Multimodal Traffic Assignment Model with Asymmetric Interactions of Vehicle Types .............. 6
3.1.1 The condition of equilibrium..................... 6
3.1.2 The multimodal user equilibrium model with asymmetric interactions ............................... 7
3.1.3 The optimality conditions of the multimodal traffic assignment model ...................................... 9
3.2 Algorithms for the multimodal Traffic Assignment Model ................................................ 11
3.2.1 The gradient projection ........................ 12
3.2.2 The diagonalization embedded with the gradient projection ........................................... 12
3.2.3 The diagonalization-streamlined gradient projection algorithm ............................................ 15
3.3 Case Study ....................................... 15
3.4 Summary .......................................... 21
4 The multimodal link toll problem with asymmetric interactions ......................................... 22
4.1 Heuristics for the Solution of Multimodal Link Toll Problem .............................................. 22
4.2 Case study ....................................... 24
4.3 Summary .......................................... 34
5 Conclusion and Future Research ..................... 36
References ........................................... 38
Appendix A: Sensitivity analysis with respect to variational inequality ............................... 41
Sensitivity analysis of variational inequality ....... 41
The sufficient and uniqueness conditions with respect to the variational inequality solution ...................41
The sensitivity analysis with respect to the variational inequality ........................................... 45
The sensitivity analysis with respect to the variational inequality for the network equilibrium problem ....... 47
The Generalized Inverse for the Sensitivity Analysis with respect to the Variational Inequality ................ 48
The definition and theorem with regard to generalized inverse .............................................. 48
The generalized inverse for the network equilibrium problem .............................................. 49
Appendix B: The bi-level link toll model ............. 53
Appendix C: Notation ................................. 56參考文獻 王中允(1994),「非對稱性交通量指派模型-運算效率提升之研究」,國立中央大學,碩士論文。
周鄭義(1999),「動態號誌時制最佳化之研究-雙層規劃模型之應用」,國立中央大學,碩士論文。
Chen, H. K. (1999). Dynamic Travel Choice Models: A Variational Inequality Approach: Springer.
Chen, H. K. (2017). A huristic for the doubly constrained entropy distribution/assignment problem. Networks and Spatial Economics, 17(1), 107-128.
Chen, M., Bernstein, D. H., Chien, S. I. J., & Mouskos, K. C. (1999). Simplified formulation of the toll design problem. Transportation Research Record, 1667(1), 88-95.
Chih-Peng, C. (2001). Congestion road pricing for mainline toll and ramp toll collection schemes. Transportation Planning Journal, 30(3), 513-538.
Cho, H.-J., Jyh-Huei Lee. (1999). Solving bilevel network design problem using sensitivity information without nondegeneracy assumption. International Journal of Operations and Quantitative Management, 5(1), 1-16.
Consiglio, W., Driscoll, P., Witte, M., & Berg, W. (2003). Effect of cellular telephone conversations and other potential interface on reaction time in a braking response. Accident; analysis and prevention, 35, 495-500.
Dafermos, S. C. (1972). The traffic assignment problem for multiclass-user transportation networks. Transportation Science, 6(1), 73-87.
Dafermos, S. C. (1980). Traffic equilibrium and variational inequalities. Transportation Science, 14(1), 42-54.
Dafermos, S. C. (1982). The general multimodal network equilibrium problem with elastic demand. Networks, 12(1), 57-72.
Fiacco, A. V. (1976). Sensitivity analysis for nonlinear programming using penalty methods. Mathematical Programming, 10(1), 287-311.
Fiacco, A. V. (1983). Introduction to Sensitivity and Stability Analysis in Nonlinear Programming: Academic Press.
Fiacco, A. V., & McCormick, G. P. (1990). Nonlinear Programming: Sequential Unconstrained Minimization Techniques: Society for Industrial and Applied Mathematics.
Hulst, M. V. D. (1999). Anticipation and the adaptive control of safety margins in driving. Ergonomics, 42(2), 336-345.
Jayakrishnan, R., Tsai, W., Prashker, J., & Rajadhyaksha, S. (1994). A faster path-based algorithm for traffic assignment. UC Berkeley: University of California Transportation Center.
Makridis, M., Mattas, K., Ciuffo, B., Alonso, M., Toledo, T., & Thiel, C. (2018). Connected and automated vehicles on a freeway scenario. Effect on traffic congestion and network capacity. Paper presented at the 7th Transport Research Arena TRA 2018, Vienna, Austria.
Martínez-Díaz, M., & Soriguera, F. (2018). Autonomous vehicles:Theoretical and practical challenges. Transportation Research Procedia, 33, 275-282.
Nagurney, A. B. (1984). Comparative tests of multimodal traffic equilibrium methods. Transportation Research Part B: Methodological, 18(6), 469-485.
Papadoulis, A., Quddus, M., & Imprialou, M. (2019). Evaluating the safety impact of connected and autonomous vehicles on motorways. Accident Analysis & Prevention, 124, 12-22.
Sheffi, Y. (1984). Urban Transportation Networks: Equilibrium Analysis With Mathematical Programming Methods: Prentice-Hall.
Smith, M. J. (1979). The existence, uniqueness and stability of traffic equilibria. Transportation Research Part B: Methodological, 13(4), 295-304.
Tientrakool, P., Ho, Y.-C., & Maxemchuk, N. F. (2011). Highway capacity benefits from using vehicle-to-vehicle communication and sensors for collision avoidance. Paper presented at the IEEE Vehicular Technology Conference.
Tobin, R. L. (1986). Sensitivity analysis for variational inequalities. Journal of Optimization Theory and Applications, 48(1), 191-204.
Tobin, R. L., & Friesz, T. L. (1988). Sensitivity analysis for equilibrium network flow. Transportation Science, 22(4), 242-250.
Warshawsky-Livne, L., & Shinar, D. (2002). Effects of uncertainty, transmission type, driver age and gender on brake reaction and movement time. Journal of Safety Research, 33(1), 117-128.
Yan, H., & Lam, W. H. K. (1996). Optimal road tolls under conditions of queueing and congestion. Transportation Research Part A: Policy and Practice, 30(5), 319-332.
40
Yang, H., & Bell, M. (1997). Traffic restraint, road pricing and network equilibrium. Transportation Research Part B: Methodological, 31(4), 303-314.
Yang, H., & Zhang, X. (2003). Optimal toll design in second-best link-based congestion pricing. Transportation Research Record, 1857(1), 85-92.
Yang, H., Zhang, X., & Meng, Q. (2004). Modeling private highways in networks with entry–exit based toll charges. Transportation Research Part B: Methodological, 38(3), 191-213.
Yang, H., Zhang, X., & Meng, Q. (2007). Stackelberg games and multiple equilibrium behaviors on networks. Transportation Research Part B: Methodological, 41(8), 841-861.
Ye, L., & Yamamoto, T. (2018). Modeling connected and autonomous vehicles in heterogeneous traffic flow. Physica A: Statistical Mechanics and its Applications, 490, 269-277.
Ye, L., & Yamamoto, T. (2019). Evaluating the impact of connected and autonomous vehicles on traffic safety. Physica A: Statistical Mechanics and its Applications, 526, 121009.
Yen, J. Y. (1971). Finding the K shortest loopless paths in a network. Management Science, 17(11), 712-716.
Zeng, Q. (1998). Heuristic search strategies to solve transportation network design problems. New Jersey Institute of Technology, USA.指導教授 陳惠國(Huey-Kuo Chen) 審核日期 2019-8-20 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare