博碩士論文 105322029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:23 、訪客IP:3.137.159.17
姓名 魏士凱(Shih-Kai Wei)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱
(Modification of TDR Penetrometer for Water Content Profile Monitoring)
相關論文
★ 時域反射法於土壤含水量與導電度遲滯效應之影響因子探討★ TDR監測資訊平台之改善與 感測器觀測服務之建立
★ 用過核子燃料最終處置場緩衝材料之 熱-水耦合實驗及模擬★ 堰塞壩破壞歷程分析及時域反射法應用監測
★ 深地層最終處置場緩衝材料小型熱-水耦合實驗之分層含水量量測改善★ 應用時域反射法於地層下陷監測之改善研發
★ 深地層處置場緩衝材料小型熱-水-力耦合實驗精進與模擬比對★ 淺層崩塌物聯網系統與深層型時域反射邊坡監測技術之整合
★ 利用線上遊戲於國小一年級至三年級學童防災教育推廣效益之研究—以桃園防災教育館為例★ 低放射性最終處置場混合型緩衝材料之工程特性及潛變試驗與模擬
★ Improved TDR Deformation Monitoring by Integrating Centrifuge Physical Modeling★ 用於滑坡監測的 PS- 和 SBAS-InSAR 處理的參數研究——以阿里山為例
★ 穿戴式偵測墜落及跌倒裝備於本國建築工地之研發測試★ 機器學習在水庫入流與濁度預測之應用-以石岡壩為例
★ 深度學習與資料擴增於山崩監測預測之可行性評估★ 利用光學與熱影像融合進行邊坡之長期穩定性監測評估
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣屬亞熱帶季風氣候,每年有許多颱風和降雨。強降雨總是會造成大量的山體滑坡,並改變邊坡周圍的地貌。隨後的颱風和洪水事件以及淺層滑坡產生的土石流皆可能會將邊坡上大量不穩定的砂土沖刷至鄰近居民周遭。其後果將影響附近居民的安全,污染物也將影響到周遭環境。為了有效地驗證邊坡穩定性,土壤含水量是最重要的監測因素之一,因此,最好在降雨過程中能自動且方便地獲取邊坡的含水量。時域反射法(Time
Domain Reflectometry)可以同時滿足連續測量邊坡的土壤體積含水量()和土壤導電度(Electrical conductivity, EC)的要求。以往的研究闡明淺層滑坡監測土壤含水量和導電度之間在不同的土壤濕潤-乾燥速率下的獨特關係。因此,本研究首先分析設置於曾文水庫流域的TDR 貫入器的觀測結果,驗證土壤含水量和導電度的關係,但由於既有TDR
裝置的不穩定性和當前TDR 貫入器的有限量測範圍,明顯地資料變異量導致了不甚滿意的結果。
基於上述的現地測量狀況,本研究利用COMSOL 數值模擬軟體進行電磁場、電能密度和應力及應變模擬,模擬各種不同的尺寸設計並考慮所有因素,進一步將現有的TDR 貫入器從單側外導體改良至雙側外導體。本研究初步提出TDR 貫入器的改良設計後,仍然進一步安排砂箱物理試驗以測試並確認其量測可行性,並旨在找出土壤含水量、導電度和基質吸力之間的關係。本研究之砂箱試驗不單使用既有的與改良後TDR 貫入器,還同時放入傳統的TDR 感測器,以觀察各個不同TDR 感測器的測量性能以及降雨
事件中可能發生的遲滯現象。
最後,本研究除了成功找出土壤含水量、導電度和基質吸力之間的緊密相依關係以外,也在實驗過程中發現不同土壤種類之特性,亦會影響TDR 貫入器的量測,並且以各TDR 感測器量測過程中所發現的遲滯現象,呼應了本研究前期提出的在不同降雨事件中,土壤含水量和導電度應會有不同關係之論點。
摘要(英) Taiwan is featured with subtropics monsoon climate and has many typhoons and rainfall
annually. Heavy rainfall always causes lots of landslides and changes landforms around the
slopes. Great quantities of unstable sand and soil on the slopes may be washed down by
subsequent typhoon and flood events, as well as the soil yields from the shallow landslides. The
consequence will affect the safety of residents nearby and raise the pollutant issue to
environment. To efficiently verify the safety of the slope, soil water content is one of the most
important factors for monitoring, therefore, it is better to automatically capture the water
content profile of the soil slope during rainfall events. Time Domain Reflectometry (TDR) can
achieve the demands of continuously measuring the volumetric water content () and the
electrical conductivity (EC) of the soil slope simultaneously. Previous study has reported the
unique relationship between the soil  and EC for the shallow landslide monitoring. Therefore,
observations by TDR penetrometer at Zengwun Reservoir Watershed were firstly retrieved for
the relationship in different soil wetting-drying rates, but apparent variations led unsatisfied
results because of the instability of the TDR device and limited sampling volume of the current
TDR penetrometer.
Based on the aforementioned measurements in the field, this study further improved the
existed TDR penetrometer from one-side to dual-sides by using COMSOL numerical software
for electromagnetic field simulations, as well as the electrical energy density and the strain in
response to stress of each different design. Considering all factors, this study attempted to obtain
the optimal design of the TDR penetrometer. Although the improvement of the TDR
penetrometer is determined, a sandbox physical test was further arranged to confirm the
feasibility and aimed to find out the relationship between soil , EC and matric suction. The
existing TDR penetrator and the improved TDR penetrator were penetrated into the sandbox,
as well as the traditional TDR probe to observe the measurement performance with each different TDR sensors and the possible hysteresis effect during the rainfall event. At last,
transforming the electrical conductivity profile obtained by ERT to the water content profile,
trying to point out the importance of the water content monitoring in slope stability.
Finally, this study revealed the close relationship between soil water content, electrical
conductivity and matric suction, and this study also found the characteristics of different soil
may affect the measurement of TDR sensors, and the hysteresis effect found in the TDR sensor
measurement process echoes the issue that the soil water content and electrical conductivity
will have different relationship in different rainfall events.
關鍵字(中) ★ 土壤含水量
★ 導電度
★ 時域反射法
關鍵字(英) ★ water content
★ electrical conductivity
★ time domain reflectometry
★ penetrometer
論文目次 1. INTRODUCTION .............................................................................................................. 1
1.1 Motivation .................................................................................................. 1
1.2 Objectives ................................................................................................... 2
2. LITERATURE REVIEW ................................................................................................... 5
2.1 Shallow landslide mechanism .................................................................... 5
2.2 Principles and related applications of TDR ................................................ 7
2.3 TDR water content profile measurement ................................................. 11
2.3.1 Distributed type sensors ................................................................... 11
2.3.2 Single sensor-water content profiling inverse computation ............. 18
2.4 Infiltration simulation with TDR monitoring ........................................... 19
2.5 Principle of Electrical Resistivity Tomography ........................................ 24
3. A PRIOR CASE STUDY USING TDR PENETROMETER ........................................... 26
3.1 Configuration of monitoring station ......................................................... 26
General...................................................................................................... 26
3.1.1 Sensing devices ................................................................................ 26
3.1.2 Configuration of filed monitoring stations ....................................... 34
3.2 Monitoring results using current TDR penetrometer ............................... 53
3.2.1 Results of TWLS016 SITE ............................................................... 53
3.2.2 Results of TWLS022 SITE ............................................................... 58
3.2.3 Results of TWLS044 SITE ............................................................... 61
3.3 Preliminary discussion and summary ....................................................... 65
4. MODIFICATION OF TDR PENETROMETER .............................................................. 69
4.1 Details of the current TDR penetrometer ................................................. 69
4.2 Geometry optimization of the TDR penetrometer .................................... 72
4.3 Analysis process by using COMSOL 5.3 ................................................. 77
4.4 Recommendations to modified TDR penetrometer .................................. 82
4.4.1 Recommendations to TDR penetrometer geometry ......................... 82
4.4.2 Bidirectional conductor analysis ...................................................... 84
4.5 Comparison of the TDR penetrometer sensing area ................................. 88
4.6 Infiltration simulation .............................................................................. 95
4.6.1 Soil sample preparation and test equipment ..................................... 95
4.6.2 Test configuration of sandbox ........................................................ 100
4.6.3 Results and discussions .................................................................. 104
5. CONCLUSIONS AND SUGGESTIONS ..................................................................... 116
5.1 Conclusions ............................................................................................. 116
5.2 Suggestions .............................................................................................. 117
6. REFERENCES .............................................................................................................. 118
Appendix A ............................................................................................................................. 122
Appendix B ............................................................................................................................. 123
Appendix C ............................................................................................................................. 124
Appendix D ............................................................................................................................ 125
Appendix E ............................................................................................................................. 126
Appendix F ............................................................................................................................. 127
Appendix G ............................................................................................................................ 128
Appendix H ............................................................................................................................ 129
Appendix I .............................................................................................................................. 130
Appendix J .............................................................................................................................. 131
參考文獻 1. Fredlund, D. G., (1987). “Slope stability analysis incorporating the effect of soil suction,”
Slope Stability, Edited by Anderson, M. G. and Richards, K. S., John Wiley and Sons Ltd.
2. Lee, H.C., Fang, Y.M., Lee, B.J., and King, C.T. (2010). “Design of a multifunctional
wireless sensor for in-situ monitoring of debris flows,” IEEE Transactions on
Instrumentation and Measurement, 59(11), 2958-2967.
3. Uchimura, T, Towhata, I., Anh, T.T.L., Fukuda, J., Bautista, C.J.B., Wang, L., Seko, I.,
Uchida, T., Matsuoka, A., Ito, Y., Onda, Y., Iwagami, S., Kim, M.S., and Sakai, N., (2010).
“Simple monitoring method for precaution of landslides watching tilting and water
contents on slopes surface, “Landslides, 7, 351–357.
4. Uchimura, T, Towhata, I., Wang, L., and Qiao, J., (2011). “Validation and interpretation of
monitored behavior of slopes vulnerable to failure,” Proceedings of the Second World
Landslide Forum – 3-7 October 2011, Rome.
5. Fredlund, D. G., & Rahardjo, H. (1993). An overview of unsaturated soil behaviour.
Geotechnical special publication, 1-1.
6. Fredlund, D. G., & Rahardjo, H. (1993). Soil mechanics for unsaturated soils. John Wiley
& Sons.
7. Van Genuchten, M. T., & Nielsen, D. R. (1985). On describing and predicting the hydraulic
properties. In Annales Geophysicae (Vol. 3, No. 5, pp. 615-628).
8. Fredlund, D. G., & Xing, A. (1994). Equations for the soil-water characteristic curve.
Canadian geotechnical journal, 31(4), 521-532
9. Chapuis, R. P., & Aubertin, M. (2003). On the use of the Kozeny Carman equation to
predict the hydraulic conductivity of soils. Canadian Geotechnical Journal, 40(3), 616-628.
10. SH, L., Kadoya, M., & Tanakamaru, H. (1988, February). The Modification of Uncertain
Stage-Discharge Curves. In PROCEEDINGS OF THE JAPANESE CONFERENCE ON
HYDRAULICS (Vol. 32, pp. 371-375). Japan Society of Civil Engineers.
11. Dowding, C. H., Su, M. B., & O′Connors, K. (1988, October). Principles of time domain
reflectometometry applied to measurement of rock mass deformation. In International
Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No.
5, pp. 287-297). Pergamon.
12. Dowding, C. H., & Pierce, C. E. (1994). Measurement of localized failure planes in soil
with time domain reflectometry. In Proceedings of the Symposium on Time Domain
Reflectometry in Environmental, Infrastructure, and Mining Applications, Evanston,
Illinois, Sept (pp. 7-9).
13. Rutherford, D. R., Goetz, D. P., Thomas, C. U., Webb, R. J., Bruxvoort, W. J., Buhler, J.
D., & Hollywood, W. J. (1997). U.S. Patent No. 5,692,950. Washington, DC: U.S. Patent
and Trademark Office.
14. Yankielun, N. E., & Zabilansky, L. (1999). Laboratory investigation of time-domain
reflectometry system for monitoring bridge scour. Journal of Hydraulic engineering,
125(12), 1279-1284.
15. Yang, P. H., (2002). Application of TDR water level measurement in geotechnical and
hydraulic engineering (Doctoral dissertation). Retrieved from
http://hdl.handle.net/11536/69719.
16. Lin, C.-P, Wang, K., Chung, C.-C., and Weng, Y.-W. (2017) “New types of TDR sensing
waveguides for bridge scour monitoring,” Smart Materials and Structures, DOI:
10.1088/1361-665X/aa71f9.
17. Wang, K., Lin, C.-P, Chung, C.-C. (2019) A bundled time domain reflectometry‐based
sensing cable for monitoring of bridge scour. Structural Control and Health Monitoring,
DOI: 10.1002/stc.2345.
18. Topp, G. C., Davis, J. L., & Annan, A. P. (1980). Electromagnetic determination of soil
water content: Measurements in coaxial transmission lines. Water resources research, 16(3),
574-582.
19. Serrarens, D., MacIntyre, J. L., Hopmans, J. W., & Bassoi, L. H. (2000). Soil moisture
calibration of TDR multilevel probes. Scientia Agricola, 57(2), 349-354.
20. Menziani, M., Pugnaghi, S., Vincenzi, S., & Santangelo, R. (2003). Soil moisture
monitoring in the Toce valley (Italy). Hydrology and Earth System Sciences Discussions,
7(6), 890-902.
21. Schiffler, G. R., & Bardossy, A. (1991). Geostatistical assessment of space-time distributed
data: application to soil moisture measurements in an experimental catchment. IAHS
PUBL, IAHS, WALLINGFORD,(ENGL), 1991,, (202), 279-287.
22. Dahan, M., Levi, S., Luccardini, C., Rostaing, P., Riveau, B., & Triller, A. (2003). Diffusion
dynamics of glycine receptors revealed by single-quantum dot tracking. Science,302(5644), 442-445.
23. Hooks, B. (1992). Yearning: Race, gender, and cultural politics.
24. Cichota, L. C., Moresco, R. N., Duarte, M. M. M. F., & Silva, J. E. P. D. (2008). Evaluation
of ischemia‐modified albumin in anemia associated to chronic kidney disease. Journal of
Clinical Laboratory Analysis, 22(1), 1-5.
25. Yang, S. H., (2010). Investigation of Relationship between Soil Moisture and Electrical
Properties -A Field Scale Study (Doctoral dissertation). Retrieved from
http://hdl.handle.net/11536/47325.
26. Cheng, C. F., (2013) Improvement of TDR Multi-point Moisture Probe for Water Content
Profiling (Master′s thesis), DOI: 10.6842/NCTU.2013.00677
27. Timlin, D., & Pachepsky, Y. (2002). Infiltration measurement using a vertical time-domain
reflectometry probe and a reflection simulation model. Soil science, 167(1), 1-8.
28. Timlin, D. J., & Pachepsky, Y. A. (1996). Comparison of three methods to obtain the
apparent dielectric constant from time domain reflectometry wave traces. Soil Science
Society of America Journal, 60(4), 970-977.
29. Heimovaara, T. J., Huisman, J. A., Vrugt, J. A., & Bouten, W. (2004). Obtaining the spatial
distribution of water content along a TDR probe using the SCEM-UA Bayesian inverse
modeling scheme. Vadose Zone Journal, 3(4), 1128-1145.
30. Greco, R., & Guida, A. (2008). Field measurements of topsoil moisture profiles by vertical
TDR probes. Journal of hydrology, 348(3-4), 442-451.
31. Greco, R., Guida, A., Damiano, E., & Olivares, L. (2010). Soil water content and suction
monitoring in model slopes for shallow flowslides early warning applications. Physics and
Chemistry of the Earth, Parts A/B/C, 35(3-5), 127-136.
32. Chung, C. C., Lin, C. P., Yang, S. H., Lin, J. Y., & Lin, C. H. (2019). Investigation of nonunique
relationship between soil electrical conductivity and water content due to dryingwetting
rate using TDR. Engineering Geology, 252, 54-64.
33. Loke, M. H., Acworth, I., & Dahlin, T. (2003). A comparison of smooth and blocky
inversion methods in 2D electrical imaging surveys. Exploration Geophysics, 34(3), 182-
187.
34. 辜炳寰,蕭震洋,林伯勳,梁惠儀,鄭錦桐,(2009),數位影像相關係數法於擋土
牆監測之應用,中華民國第14 屆大地工程研討會。
35. 周南山(2005),山區道路邊坡災害防治,森林遊憩設施規劃設計與施工研習會。
36. 蕭新財(2011),不飽和崩積土壤淺層水文特性對邊坡穩定影響之研究,國立臺灣科
技大學碩士論文。
37. 鄭清江、譚志豪、鍾明劍、李錦發、費立沅(2009),莫拉克降雨引致高屏地區邊坡
淺層崩塌災害勘查與穩定性數值分析案例,地工技術,第122 期,133-142 頁。
38. 林德貴,陳啟天,徐森彥,蘇苗彬(2007),梨山地滑區降雨滲流及穩定性分析,水
土保持學報,第39(4)期,419 - 451 頁。
39. 周天穎(2012) 開放式土石流無線感測網路平台及前瞻性預測模式應用研究---子計
畫:建立以開放標準為基礎的土石流防災資訊平台,行政院國家科學委
40. 竇其仁(2012) 開放式土石流無線感測網路平台及前瞻性預測模式應用研究---子計
畫:設計與實作一個以SWE 為基礎應用於土石流監測之無線感測資訊透通平台,
科技部計畫。
41. 林志鴻(2012)一個具適應性之全流域土石流早期預警網際網路地理資訊系統平台,
逢甲大學資訊電機工程碩士在職專班碩士論文。
42. 李秉乾(2012)開放式土石流無線感測網路平台及前瞻性預測模式應用研究---子計
畫:無線感測網路在土石流預測模式之應用,行政院國家科學委員會。
43. 交通部運輸研究所(2016),公路邊坡崩塌監測之無線感測網路模組研發(1/2)。
44. 林德貴,陳啟天,徐森彥,蘇苗彬(2007),梨山地滑區降雨滲流及穩定性分析,水
土保持學報 39(4),419 - 451。
45. 陳岱源(2005),修正型水筒模式應用於基流分離之研究,國立成功大學碩士論文。
46. 林宏達與拱祥生(2001),不飽和土壤力學性質試驗及其在邊坡工程之應用,地工技
術,83 期,39-52。
47. 姚奕全,「應用地電阻法於崩積層含水特性調查與監測之初探」, 國立交通大學,碩
士論文,民國96 年7 月
48. 吳瑋晉,「結合地電阻與TDR 於土層含水特性之監測」,國立交通 大學,碩士論文,
民國97 年7 月
49. 林哲毅,「土壤電阻率與含水特性關係之探討」,國立交通 大學,碩士論文,民國98
年7 月
50. 尤仁弘,「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學,碩士論
文,民國95 年7 月。
指導教授 鐘志忠(Chih-Chung Chung) 審核日期 2019-8-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明