參考文獻 |
陳依涵,2016:發展地面資料同化方法以改善都卜勒雷達變分分析系統之分析
與預報能力。國立中央大學大氣物理所碩士論文,1–95。[Chen, Y.-H., 2016: Development of a surface assimilation scheme in a Variational Doppler Radar Analysis System for improving the model analysis and forecast skill. Master thesis, National Central University].
張少凡,2013:同化策略及冰相微物理對四維變分都卜勒雷達分析系統(VDRAS) 於定量降雨預報之影響研究。國立中央大學大氣物理所博士論文,1–81。[Chang, S.-F., 2013: The influence of assimilation strategies and ice-phase microphysics on the application of a four-dimensional Variational Doppler Radar Analysis System (VDRAS) for quantitative precipitation forecasts. Doctoral Dissertration, National Central University.]
戴聖倫,2010:使用四維變分同化都卜勒雷達資料以改進短期定量降雨預報。國立中央大學大氣物理所碩士論文,1–86。[Tai, S.-L., 2010: Improving short-term quantitaive precipitaion forecast by assimilating doppler radar observations with the four-dimensional variational technique. Master thesis, National Central University.]
周仲島、高聿正、修榮光、鍾吉俊、李宗融、郭鴻基,2016:臺北都會區豪雨型午後雷暴的觀測特徵與預報挑戰:2015年6月14日個案研究。大氣科學44(1),57-82。[Jou, B. J.-D., Y.-C. Kao, R.-G. R. Hsiu, C.-J. U. Jung, J. R. Lee, H. C. Kuo, 2016: Observational Characteristics and Forecast Challenge of Taipei Flash Flood Afternoon Thunderstorm: Case Study of 14 June 2015. Atmospheric Science,44(1),57-82.]
繆炯恩,2017:2015年6月14日台北盆地劇烈午後雷暴個案之高解析度模究。國立臺灣大學大氣科學研究所碩士論文,1–86。[Miao, J.-E., 2017: Cell Merger and Heavy Rainfall of the Severe Afternoon Thunderstorm Event at Taipei on 14 June 2015. Master thesis, National Taiwan University.]
Barnes, S. L., 1964: A Technique for Maximizing Details in Numerical Weather Map Analysis. J. Appl. Meteor., 3, 396-409.
Byers, H. R., and R. R. Braham, 1948: Thunderstorm Structure and Circulation. J. Meteor., 5, 71-86.
Chang, S.-F., Y.-C. Liou, J. Sun, and S.-L. Tai, 2016: The Implementation of the Ice-Phase Microphysical Process into a Four-Dimensional Variational Doppler Radar Analysis System (VDRAS) and Its Impact on Parameter Retrieval and Quantitative Precipitation Nowcasting. J. Atmos. Sci., 73, 1015-1038.
Chang, S.-F., J. Sun, Y.-C. Liou, S.-L. Tai, and C.-Y. Yang, 2014: The influence of erroneous background, beam-blocking and microphysical non-linearity on the application of a four-dimensional variational Doppler radar data assimilation system for quantitative precipitation forecasts. Meteor. Appl., 21, 444-458.
Chen, X., K. Zhao, J. Sun, B. Zhou, and W.-C. Lee, 2016: Assimilating surface observations in a four-dimensional variational Doppler radar data assimilation system to improve the analysis and forecast of a squall line case. Adv. Atmos. Sci., 33, 1106-1119.
Chung, K.-S., I. Zawadzki, M. K. Yau, and L. Fillion, 2009: Short-Term Forecasting of a Midlatitude Convective Storm by the Assimilation of Single–Doppler Radar Observations. Mon. Wea. Rev., 137, 4115-4135.
Crook, N. A., and J. Sun, 2002: Assimilating Radar, Surface, and Profiler Data for the Sydney 2000 Forecast Demonstration Project. J. Atmos. Oceanic Technol, 19, 888-898.
Crook, N. A., and J. Sun, 2004: Analysis and Forecasting of the Low-Level Wind during the Sydney 2000 Forecast Demonstration Project. Wea. Forecasting, 19, 151-167.
Feng, Z., S. Hagos, A. K. Rowe, C. D. Burleyson, M. N. Martini, and S. P. de Szoeke, 2015: Mechanisms of convective cloud organization by cold pools over tropical warm ocean during the AMIE/DYNAMO field campaign. J. Adv. Model. Earth Syst., 7, 357-381.
Franke, R., 1982: Scattered Data Interpolation: Tests of Some Method. Math. Comput., 38, 181-200.
Friedrich, K., and Coauthors, 2016: Raindrop Size Distribution and Rain Characteristics during the 2013 Great Colorado Flood. J. Hydrometeor., 17, 53-72.
Gao, T., Y.-H. Tseng, and X.-Y. Lu, 2007: An improved hybrid Cartesian/immersed boundary method for fluid–solid flows. Int. J. Numer. Methods Fluids, 55, 1189-1211.
Gochis, D., and Coauthors, 2015: The Great Colorado Flood of September 2013. Bull. Amer. Meteor. Soc., 96, 1461-1487.
Hayden, C. M., and R. J. Purser, 1995: Recursive Filter Objective Analysis of Meteorological Fields: Applications to NESDIS Operational Processing. J. Appl. Meteor., 34, 3-15.
Hsu, S. A., E. A. Meindl, and D. B. Gilhousen, 1994: Determining the Power-Law Wind-Profile Exponent under Near-Neutral Stability Conditions at Sea. J. Appl. Meteor., 33, 757-765.
Kalnay, E., 2002: Atmospheric Modeling, Data Assimilation and Predictability. Cambridge University Press.
Kawabata, J., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, and Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensiojnal variational data assimilation system. J. Meteor. Soc. Japan, 85, 255-276.
Kessler, E., 1969: On the Distribution and Continuity of Water Substance in Atmospheric Circulations. Meteor. Mongr., Amer. Meteor. Soc., 1-84.
Li, Y., X. Wang, and M. Xue, 2012: Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble–3DVAR System for the Prediction of Hurricane Ike (2008). Mon. Wea. Rev., 140, 3507-3524.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over taiwan island. Wea. Forecasting, 26, 44-60.
Malkus, J. S., 1954: Some results of a trade-cumulus cloud investigation. J. Meteor., 11, 220-237.
Malkus, J. S., and H. Riehl, 1964: Cloud structure and distributions over the tropical Pacific Ocean. Tellus, 16, 275-287.
Miller, M. J., and R. P. Pearce, 1974: A three-dimensional primitive equation model of cumulonimbus convection. Q. J. R. Meteor. Soc., 100, 133-154.
Navon, I. M., X. Zou, J. Derber, and J. Sela, 1992: Variational Data Assimilation with an Adiabatic Version of the NMC Spectral Model. Mon. Wea. Rev., 120, 1433-1446.
Pan, X., X. Tian, X. Li, Z. Xie, A. Shao, and C. Lu, 2012: Assimilating Doppler radar radial velocity and reflectivity observations in the weather research and forecasting model by a proper orthogonal-decomposition-based ensemble, three-dimensional variational assimilation method. J. Geophys. Res, 117.
Simpson, J., W. L. Woodley, A. H. Miller, and G. F. Cotton, 1971: Precipitation Results of Two Randomized Pyrotechnic Cumulus Seeding Experiments. J. Appl. Meteor., 10, 526-544.
Simpson, J., T. D. Keenan, B. Ferrier, R. H. Simpson, and G. J. Holland, 1993: Cumulus mergers in the maritime continent region. Meteor Atmos. Phys., 51, 73-99.
Snyder, C., and F. Zhang, 2003: Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Wea. Rev., 131, 1663-1677.
Sun, J., and N. A. Crook, 1997: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part I: Model Development and Simulated Data Experiments. J. Atmos. Sci., 54, 1642-1611.
——, 1998: Dynamical and Microphysical Retrieval from Doppler Radar Observations Using a Cloud Model and Its Adjoint. Part II: Retrieval Experiments of an Observed Florida Convective Storm. J. Atmos. Sci., 55, 835-852.
——, 2001: Real-Time Low-Level Wind and Temperature Analysis Using Single WSR-88D Data. Wea. Forecasting, 16, 117-132.
Sun, J., and Y. Zhang, 2008: Analysis and Prediction of a Squall Line Observed during IHOP Using Multiple WSR-88D Observations. Mon. Wea. Rev., 136, 2364-2388.
Sun, J., and H. Wang, 2013: Radar Data Assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a Squall Line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245-2264.
Sun, J., M. Chen, and Y. Wang, 2010: A Frequent-Updating Analysis System Based on Radar, Surface, and Mesoscale Model Data for the Beijing 2008 Forecast Demonstration Project. Wea. Forecasting, 25, 1715-1735.
Tai, S.-L., Y.-C. Liou, J. Sun, and S.-F. Chang, 2017: The Development of a Terrain-Resolving Scheme for the Forward Model and Its Adjoint in the Four-Dimensional Variational Doppler Radar Analysis System (VDRAS). Mon. Wea. Rev., 145, 289-306.
Tai, S.-L., Y.-C. Liou, J. Sun, S.-F. Chang, and M.-C. Kuo, 2011: Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan. Wea. Forecasting, 26, 975-992.
Tao, W.-K., and J. Simpson, 1984: Cloud Interactions and Merging: Numerical Simulations. J. Atmos. Sci., 41, 2901-2917.
Tao, W.-K., and J. Simpson, 1989: A Further Study of Cumulus Interactions and Mergers: Three-Dimensional Simulations with Trajectory Analyses. J. Atmos. Sci., 46, 2974-3004.
Tong, M., and M. Xue, 2005: Ensemble Kalman Filter Assimilation of Doppler Radar Data with a Compressible Nonhydrostatic Model: OSS Experiments. Mon. Wea. Rev., 133, 1789-1807.
Tseng, Y.-H., and J. H. Ferziger, 2003: A ghost-cell immersed boundary method for flow in complex geometry. J. Comput. Phys., 192, 593-623.
Watson, A. I., and D. O. Blanchard, 1984: The Relationship between Total Area Divergence and Convective Precipitation in South Florida. Mon. Wea. Rev., 112, 673-685.
Westcott, N., 1984: A Historical Perspective on Cloud Mergers. Bull. Amer. Meteor. Soc., 65, 219-226.
Xiao, Q., and J. Sun, 2007: Multiple-Radar Data Assimilation and Short-Range Quantitative Precipitation Forecasting of a Squall Line Observed during IHOP_2002. Mon. Wea. Rev., 135, 3381-3404.
Xiao, X., J. Sun, M. Chen, X. Qie, Y. Wang, and Z. Ying, 2017: The characteristics of weakly forced mountain-to-plain precipitation systems based on radar observations and high-resolution reanalysis. J. Geophys. Res, 122, 3193-3213.
Xue, M., M. Tong, and K. K. Droegemeier, 2006: An OSSE framework based on the ensemble square root kalman filter for evaluating the impact of data from radar networks on thunderstorm analysis and forecasting. J. Atmos. Oceanic Technol., 23, 46-66. |