博碩士論文 106621004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.222.161.119
姓名 許修維(Hsiu-Wei Hsu)  查詢紙本館藏   畢業系所 大氣科學學系
論文名稱 2008 年 SoWMEX 期間雷達折射率 之特徵及應用
(The Characteristics and Application of Radar Refractivity During 2008 SoWMEX)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近地表的水氣資訊對於研究對流肇始及邊界層發展相當重要,但是過去對於水氣的觀測僅限於地面觀測點或線上的方式,高時間空間解析度的水氣資訊仍相當缺乏。折射率值的變化會受到溫度、壓力、濕度的影響,從地面測站的資料顯示折射率的變化有79%以上歸因於水氣的變化,因此本研究透過2008年SoWMEX(Southwest Monsoon Experiment)期間,NCAR S-Pol雷達所反演出的折射率及地面測站資料,來評估高時間空間解析度的水氣變化特徵與天氣現象之間的關聯。
結果顯示,雷達折射率與地面測站和探空的觀測結果具有相當高的一致性,表示其能夠代表近地表水氣資訊。在實驗期間,雷達折射率的變化主要受到不同天氣系統下的水氣影響。在弱綜觀條件下,雷達折射率的變化能夠清楚地顯示海陸風環流的發展,且由於午夜時風速減小造成的水氣累積以及接近清晨時較乾燥的陸風,內陸測站在一天當中折射率的最大(小)值會發生在午夜(清晨)。分析結果也顯示早上富含水氣的海風鋒面移入,對於下午的對流提供更有利於其生長的環境。伴隨降雨造成的的蒸發冷卻效應影響,雷達回波與折射率的梯度分布相當一致,同時降雨造成的冷濕空氣亦會被大環境風場影響而逐漸消散。
本研究成功地利用氣象雷達來反演折射率,其能夠補足地面測站及其他儀器在空間上的不足,提供在Meso-γ尺度下更細微的水氣變化,並捕捉山區對流肇始的關鍵因子,未來進一步使用折射率研究邊界層發展,對流降雨或是應用至資料同化亦具有相當大的潛力。
摘要(英) Near-surface high temporal and spatial moisture information is important for research of convection initiation(CI) and boundary layer evolution, but the in-situ water vapor observation is limited to the surface station points and quite deficient. The change of refractivity is caused by variations of the pressure, temperature, and particularly humidity. The result of fixed stations shows that the variation of refractivity is mainly from water vapor contribution. Therefore, this study combines the refractivity retrieved from NCAR S-band dual-Polarization Doppler radar (S-Pol) and surface station data during 2008 SoWMEX(Southwest Monsoon Experiment) to study the relationship between the characteristics of moisture variation with high resolution and different weather systems.
The comparison shows that the refractivity results between the radar retrieval and in-situ observation, like surface stations and radiosonde, have high correlation. Thus, the radar data derived refractivity is representative of low-level atmospheric refractivity.
During 2008 SoWMEX, it is shown that the variation of refractivity is mainly influenced by water vapor in different weather systems. Under weak-synoptic condition, we find that radar-retrieved refractivity field can clearly reveal the development of land sea breeze circulation. The maximum (minimum) of refractivity takes place around the midnight (dawn), as a result of the air mass accumulation caused by wind speed reduction near midnight and the dryer land breeze near dawn. The intrusion of sea breeze front with abundant water vapor in the morning might set up a favorable environment for afternoon convection initiation. Besides, due to evaporation cooling caused by rainfall, the distribution of sharp refractivity gradient and reflectivity over 30dBZ show high consistency. The cold and wet air is reduced gradually owing to dryer downslope wind from typhoon circulation.
This study demonstrates that refractivity inferred by weather radar can compensate the limited data coverage from fixed surface stations and provide the low-level water vapor information with high resolution under Meso-γ scale. It is also feasible to use refractivity to study the development of the boundary layer and convective storms, or be applied to data assimilation.
關鍵字(中) ★ 折射率
★ 邊界層
★ 對流肇始
關鍵字(英) ★ refractivity
★ boundary layer
★ convection initiation
論文目次 摘要 I
Abstract II
致謝 IV
目錄 VI
表目錄 VIII
圖目錄 IX
一、緒論 1
1.1前言與文獻回顧 1
1.2研究動機與方向 3
二、資料與方法 4
2.1觀測實驗介紹 4
2.2儀器介紹 5
2.2.1 NCAR S-Pol雷達介紹 5
2.2.2地面觀測站介紹 5
2.3使用資料介紹 5
2.4折射指數與折射率 6
2.5雷達折射率 8
2.5.1相位的測量 8
2.5.2雷達折射率的反演步驟 11
2.5.3雷達折射率的誤差來源 12
2.6雷達折射率的驗證 13
2.6.1雷達折射率的驗證-弱綜觀環境 14
2.7近地表水氣反演 15
三、結果與討論 15
3.1雷達折射率分布特徵 15
3.2海陸風與午後對流 18
3.2.1 2008年6月8日 18
3.2.2 2008年6月20日 20
3.3 降雨帶的移入 23
3.3.1 2008年6月24日 23
3.4弱綜觀天氣影響下折射率的日夜循環 24
四、結論與未來展望 27
4.1結論 27
4.2未來展望 29
五、參考文獻 31
六、附錄 36
1.各變數對於折射率的變化貢獻量 36
2.弱綜觀環境場的選取 36
3.雷達折射率的資料處理 36
參考文獻 朱瑞鼎、陳昭銘、張家治,2017:“臺南地區弱綜觀天氣之降雨分析”,106 年中央氣象局天氣分析與預報研討會。
林品芳、張保亮、周仲島,2012:“弱綜觀環境下臺灣午後熱對流特徵及其客觀預報”, 大氣科學,40 卷,77-108。
陳薇鈞、陳台琦、林沛練、馮雅茜,2013:“2008 年西南氣流實驗 IOP8 雷達折射指數場特性之研究”, 大氣科學,41 卷,117-138。
Bean, B. R., and E. J. Dutton, 1968: Radio Meteorology. Dover Publications, 435 pp.
Besson, L., C. Boudjabi, O. Caumont, and J. Parent du Chatelet, 2012: Links between weather phenomena and characteristics of refractivity measured by precipitation radar. Bound. Layer Meteor., 143, 77–95.
Bodine, D., D. Michaud, R. D. Palmer, P. L. Heinselman, J. Brotzge, N. Gasperoni, B. L. Cheong, M. Xue, and J. Gao, 2011: Understanding radar refractivity: Sources of uncertainty. J. Appl. Meteor. Climatol., 50, 2543–2560.
——, P. L. Heinselman, B. L. Cheong, R. D. Palmer, and D. Michaud, 2010: A case study on the impact of moisture variability on convection initiation using radar refractivity retrievals. J. Appl. Meteor. Climatol., 49, 1766–1778.
Buban, M. S., C. L. Ziegler, E. N. Rasmussen, and Y. P. Richardson, 2007: The dryline on 22 May 2002 during IHOP: Ground-radar and in situ data analyses of the dryline and boundary layer evolution. Mon. Wea. Rev., 135, 2473–2505.
Chang, C. P., and G. T. Chen, 1995: “Tropical circulation associated with southwest monsoon onset and westerly surges over the South China Sea”. Mon. Wea. Rev., 123, 3254-3267.
Chen, T.-C. , M.-C. Yen, J.-D. Tsay, C.-C. Liao, and E. S. Takle, 2014: Impact of Afternoon Thunderstorms on the Land–Sea Breeze in the Taipei Basin during Summer: An Experiment. J. Appl. Meteor. Climatol., 53, 1714–1738.
Cheong, B. L., R. D. Palmer, C. D. Curtis, T.-Y. Yu, D. S. Zrnic´, and D. Forsyth, 2008: Refractivity retrieval using the Phased Array Radar: First results and potential for multi-function operation. IEEE Trans. Geosci. Remote Sens., 46, 2527–2537.
Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 1767–1785.
Creese, C.W., 1999: Meteorological Interpretation of Near-surface Refractivity Measurements. M.Sc thesis, McGill University, 83 pp.
Dabberdt, W. F., and T. W. Schlatter, 1996: Research opportUnities from emerging atmospheric observing and modeling capabilities. Bull. Amer. Meteor. Soc., 77, 305–323.
Demoz, B., C. Flamant, T. Weckwerth, D. Whiteman, K. Evans, F. Fabry, P. Di Girolamo, D. Miller, B. Geerts, W. Brown, G. Schwemmer, B. Gentry, W. Felts, and Z. Wang, 2006: The dryline on 22 May 2002 during IHOP: Convective-scale measurements at the profiling site. Mon. Wea. Rev., 134, 294–310.
Fabry, F., 2004: Meteorological value of ground target measurements by radar. J. Atmos. Oceanic Technol., 21, 560–573.
——, 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 79–91.
——, and C. R. Pettet, 2003: A Primer to the Interpretation of Refractivity Imagery during IHOP_2002. International H20 Project (IHOP) 2002, IHOP_2002 Refractivity Manuai, 1-11 pp.
——, and J. Sun, 2010: For how long should what data be assimilated for the mesoscale forecasting of convection and why? Part I: On the propagation of initial condition errors and their implications for data assimilation. Mon. Wea. Rev., 138. 242–255.
——, C. Frush, I. Zawadzki, and A. Kilambi, 1997: On the extraction of near-surface index of refraction using radar phase measurements from ground targets. J. Atmos. Oceanic Technol., 14, 978–987.
Feng, Y.-C., 2017: The essential problem of radar-estimated refractivity-Quantifying its biases and errors. Ph.D. thesis, McGill University, 103 pp.
——, and F. Fabry, 2018: Quantifying the Error of Radar-Estimated Refractivity by
Multiple Elevation and Dual-Polarimetric Data. J. Atmos. Oceanic Technol., 35, 1897-1911
——, ——, and T. M. Weckwerth, 2016: Improving radar refractivity retrieval by considering the change in the refractivity profile and the varying altitudes of ground targets. J. Atmos. Oceanic Technol., 33, 989–1004.
Fritz, J., and V. Chandrasekar, 2009: Implementation and analysis of networked radar refractivity retrieval. J. Atmos. Oceanic Technol., 26, 2123–2135.
Gasperoni, N. A., M. Xue, R. D. Palmer, and J. Gao, 2013: Sensitivity of convective initiation prediction to near-surface moisture when assimilating radar refractivity: Impact tests using OSSEs. J. Atmos. Oceanic Technol., 30, 2281–2302.
Hao, Y., D. Goeckel, R. Janaswamy, and S. Frasier, 2006: Surface refractive index field estimation from multiple radars. Radio Sci., 41, RS3002.
Heinselman, P. L., B. L. Cheong, R. D. Palmer, D. Bodine, and K. Hondl, 2009: Radar refractivity retrievals in Oklahoma: Insights into operational benefits and limitations. Wea. Forecasting, 24, 1345–1361.
Lin, P.-F., P.-L. Chang, B. J.-D. Jou, J. W. Wilson, and R. D. Roberts, 2011: Warm season afternoon thunderstorm characteristics under weak synoptic-scale forcing over Taiwan Island. Wea. Forecasting, 26, 44–60.
Montmerle, T., A. Caya, and I. Zawadzki, 2002: Short-term numerical forecasting of a shallow storms complex using bistatic and single-Doppler radar data. Wea. Forecasting, 17, 1211–1225,
National Research Council, 1998: The Atmospheric Sciences: Entering the Twenty-First Century. National Academy Press, 364 pp.
Nicol, J. C., and A. J. Illingworth, 2013: The effect of phase correlated returns and spatial smoothing on the accuracy of radar refractivity retrievals. J. Atmos. Oceanic Technol., 30, 22–39.
——, ——, T. Darlington, and M. Kitchen, 2013: Quantifying errors due to frequency changes and target location uncertainty for radar refractivity retrievals. J. Atmos. Oceanic Technol., 30, 2006–2024.
——, ——, and K. Bartholomew, 2014: The potential of 1 h refractivity changes from an operational C-band magnetron-based radar for numerical weather prediction validation and data assimilation. Quart. J. Roy. Meteor. Soc., 140, 1209–1218.
Park, S., 2004: Water vapor Estimation Using Near-Surface Radar Refractivity during IHOP_2002. M.Sc. thesis, McGill University, 77 pp.
——, and F. Fabry, 2010: Simulation and interpretation of the phase data used by the radar refractivity retrieval algorithm. J. Atmos. Oceanic Technol., 27, 1286–1301.
Roberts, R. D., and Coauthors, 2008: REFRACTT-2006: Real-time retrieval of high-resolution low-level moisture fields from operational NEXRAD and research radars. Bull. Amer. Meteor. Soc., 89, 1535–1548.
Smith, E. K., and S. Weintraub, 1953: The constants in the equation for atmospheric refractive index at radio frequencies. Proc. IRE, 41, 1035–1037.
Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.
Sun, J., 2005: Convective-scale assimilation of radar data: Progress and challenges. Quart. J. Roy. Meteor. Soc., 131, 3439–3463.
Talbot, C., P. Augustin, C. Leroy, V. Willart, H. Delbarre, and G. Khomenko, 2007: Impact of a sea breeze on the boundary layer dynamics and the atmospheric stratification in a coastal area of the North Sea. Bound.-Layer Meteor., 125, 133–154.
Tu, C.-C., Y.-L. Chen, P.-L. Lin, and Y. Du, 2019: Characteristics of the Marine Boundary Layer Jet over the South China Sea during the Early Summer Rainy Season of Taiwan. Mon. Wea. Rev., 147, 457-475.
Wakimoto, R. M., and H. V. Murphey, 2010: Frontal and radar refractivity analyses of the dryline on 11 June 2002 during IHOP. Mon. Wea. Rev., 138, 228–241.
Weckwerth, T. M., 2000: The effect of small-scale moisture variability on thunderstorm initiation. Mon. Wea. Rev., 128, 4017–4030.
——, V. Wulfmeyer, R. M. Wakimoto, R. M. Hardesty, J. W. Wilson, and R. M. Banta, 1999: NCAR–NOAA lower-tropospheric water vapor workshop. Bull. Amer. Meteor. Soc., 80, 2339–2357.
——, C. R. Pettet, F. Fabry, S. J. Park, M. A. LeMone, and J. W. Wilson, 2005: Radar refractivity retrieval: Validation and application to short-term forecasting. J. Appl. Meteor., 44, 285–300.
Xu, W., E. J. Zipser, Y.-L. Chen, C. Liu, Y.-C. Liou, W.-C. Lee, and B. J.-D. Jou, 2012: An orography-associated extreme rainfall event during TiMREX: Initiation, storm evolution, and maintenance. Mon. Wea. Rev., 140, 2555–2574.
指導教授 林沛練 廖宇慶(Pay-Liam Lin Yu-Chieng Liou) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明