博碩士論文 106426009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:3.138.37.50
姓名 楊亞嫻(Ya-Sian Yang)  查詢紙本館藏   畢業系所 工業管理研究所
論文名稱 以混合整數規劃 安插電鍍銅平行機台之緊急訂單
(Using Mixed Integer Programming to Schedule Rush Orders for Plating Copper Parallel Machines)
相關論文
★ 以模擬退火演算法 進行化鍍製程無關聯平行機台之排程★ 以混合整數規劃進行非相關平行機台之批次製造排程
★ 考量最大利潤之再生能源發電業最佳能源分配★ 工業用電考量時間電價之太陽能發電系統最佳配置規劃
★ 應用深度學習優化塗佈機之預測性維護★ 應用資料探勘提升伺服器CPU熱流驗證效能
★ 半導體設備商因應歐盟碳邊境調整機制之供應商遴選模式★ 以螞蟻演算法最佳化具備時間窗考量之貨櫃電池運輸路徑
★ 以混合整數規劃優化移動式充電樁存放位置★ 快遞轉運中心以風光互補發電提升電動車隊用電之綠能佔比
★ 製藥業連續製程可行性之外部環境評估★ 以基因演算法優化無人機送餐路徑
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近十年來半導體產業已是全世界非常重要的產業之一,在未來,物聯網、人工智慧與電動汽車等科技逐漸崛起,而半導體是這些未來科技的主要元件材料,所以不管是現在還是未來,世界半導體協會、台灣半導體產業協會或工研院等機構皆認為半導體產業都將蓬勃發展並帶動半導體的供應鏈,每年的市場成長將不斷的上升,其中台灣擁有全球最完整的IC產業鏈及上下游的專業分工,使台灣在2018年拿下IC製造與封測全球第一,而IC設計位居全球第二的好成績。
陶瓷基版為台灣IC產業下游中的其中一環,比一般基板更適用於較惡劣的環境,且性能穩定,其最大優點為耐熱,使它廣泛應用於功率電子、電子封裝、混合微電子與多晶片模塊等領域,國內外競爭廠商有Kyocera、Murata、同欣電子、禾伸堂、九豪和璦司柏等,本研究以電鍍銅製程為插單的主要探討,電鍍銅製程為陶瓷基板中的主要製程之一,製造時間長且產量需求龐大,此機台是屬於平行機台,在排程問題中是常見的問題類型之一,本研究使用混合整數規劃方法求解此站的緊急訂單排程問題
,以找出最小延遲成本的最佳解。
大多製造業都是顧客選擇公司,而不是公司考慮是否接單,尤其是重要客戶的緊急訂單,為了符合實際狀況,本文所考慮的是接受所有急單,為了讓決策者跳脫大客戶優先生產的舊有觀念,本研究依照決策者們的主觀認知給予所有訂單不同的權重,當發生訂單延遲時,普通單與急單會根據不同權重有不同的延遲成本,求出延遲成本後進而比較插單前後所帶來的影響,以便給決策者做適當的決策,經過小筆數據模型測試後,本研究以週排程為基準並且模擬實際例子,最後依照求解中所面臨的問題與求解的結果進行結論與建議。
摘要(英) In the past ten years, the semiconductor industry has become one of the most important industries in the world. Such as the Internet of Things, artificial intelligence and electric vehicles will gradually emerge in the future. Semiconductors are the main component materials of these future technologies, so whether it is now or in the future, SEMI、TSIA or ITRI, and so on believed that the semiconductor industry will flourish and drive the supply chain of semiconductors. The demand of the market will continue to rise every years.
Among them, Taiwan has the most complete IC industry chain in the world and the professional division of work between upstream and downstream, which makes Taiwan become the number one in the world in IC manufacturing and testing in 2018. And IC design ranks second in the world.
Ceramic substrate is one of the downstream of IC industry in Taiwan. It is more suitable for harsh environment than general substrate, and its performance is stable. Its biggest advantage is heat tolerance, which makes it widely used in power electronics、electronic package、hybrid microelectronics and MCM. Domestic and foreign competitors include Kyocera、Murata、Tong Hsing、HolyStone、LEATEC Fine Ceramics and ICP. This study focuses on the rush order in the Plating Copper process. The Plating Copper process is one of the main processes in the Ceramic substrate. The manufacturing time is long and the production demand is huge. This machine belongs to the parallel machine and is one of the common types of problems in the scheduling problem. This study uses a mixed integer programming method to solve the rush order in scheduling problem at this station to find the best solution for the minimum delay cost.
In most manufacturing situations, the company is selected by the customer, not the company considering whether to take orders, especially the rush orders of important

customers. In order to meet the actual situation, our study considers accepting all the rush orders. In order to let decision maker think outside the box that important client not priority production. In this study, all the orders are given different weights according to the subjective of the decision makers. When an order delay occurs, the ordinary order and the rush order will have different delay costs according to different weights. After calculating the delay cost, we compare the effect of whether we want to have rush order or not, in order to make appropriate decisions for the decision makers. After the small data model test, this study takes the weekly schedule as the benchmark and simulates the actual situation. Finally, conclusions and suggestions are made according to the problems faced after the solution and the results of the solution.
關鍵字(中) ★ 陶瓷基板
★ 平行機台排程
★ 緊急訂單
★ 混合整數規劃
關鍵字(英) ★ Ceramic substrate
★ Parallel machine scheduling
★ Rush orders
★ Mixed integer programming
論文目次 目錄
摘要 i
Abstract ii
目錄 iv
圖目錄 vi
表目錄 vii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 研究流程與架構 1
1.3 研究目的 3
第二章 半導體產業與研究問題 4
2.1 半導體產業 4
2.2 陶瓷基板 8
2.3 研究問題 13
第三章 文獻探討 18
3.1 生產排程 18
3.1.1 不同排程問題分類 18
3.1.2 解法 21
3.2 平行機台 25
3.3 緊急訂單 28
3.4 混合整數規劃 30
第四章 研究方法 33
4.1 研究模型基本假設 33
4.2 研究方法與定義 34
4.3 數學模型 35
第五章 實例分析與驗證 38
5.1 模型測試 38
5.2 模擬實際例子 41
第六章 結論與建議 43
參考文獻 44
參考文獻 中文文獻
1. 台灣陶瓷學會。陶瓷技術新知(2017)。http://www.tcers.org.tw/news-tw/ceramic-technology/204-led,台灣陶瓷學會:臺南市,臺灣。
2. 科技政策研究與資訊中心。科技產業資訊室(2018)。http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=14787,國家實驗研究院:臺北市,臺灣。
3. 產業價值鏈資訊平台(2018)。LED照明產業產業鏈簡介。 https://ic.tpex.org.tw/introduce.php?ic=D000,臺灣證券交易所:臺北市,臺灣。
4. 經濟部工業局。半導體產業範疇(2018)。https://www.sipo.org.tw/about-us.html,經濟部工業局智慧電子產業計畫推動辦公室:臺北市,臺灣。
5. 璦司柏電子股份有限公司。2010年新瓷器時代-LED陶瓷散熱方案。
http://www.icprotect.com.tw/articles-9.html,璦司柏電子股份有限公司:桃園市,臺灣。
6. Money DJ理財網(2018)。陶瓷機板。http://newjust.masterlink.com.tw/HotProduct/HTML/Detail.xdjhtm?A=PA67-2.html,(上網日期:2018年11月17日)。
7. M材料世界網(2018)。LED陶瓷散熱基板之發展與應用。https://reurl.cc/e6YQb,(上網日期:2018年12月01日)。
英文文獻
8. Alharkan I, Saleh M, Ghaleb M-A, Kaid H, Farhan A and Almarfadi A (2019). Tabu Search and Particle Swarm Optimization Algorithms for Two Identical Parallel Machines Scheduling Problem with a Single Server. Journal of King Saud University-Engineering Sciences.
9. Amin G-R and El-Bouri A (2018). A minimax linear programming model for dispatching rule selection. Computers & Industrial Engineering 121: 27-35.
10. Behnamian J, Ghomi S-F, Jolai F and Amirtaheri O (2012). Realistic two-stage flowshop batch scheduling problems with transportation capacity and times. Applied Mathematical Modelling 36(2): 723-735.
11. Ceschia S, Gaspero L-D and Schaerf A (2017). Solving discrete lot-sizing and scheduling by simulated annealing and mixed integer programming. Computers & Industrial Engineering 114: 235-243.
12. Cheng B-Y, Leung J-Y-T and Li K (2015). Integrated scheduling of production and distribution to minimize total cost using an improved ant colony optimization method. Computers & Industrial Engineering 83: 217-225.
13. Chung T, Gupta J-N, Zhao H and Werner F (2019). Minimizing the makespan on two identical parallel machines with mold constraints. Computers & Operations Research 105: 141-155.
14. Cordone R and Hosteins P (2019). A bi-objective model for the single-machine scheduling problem with rejection cost and total tardiness minimization. Computers & Operations Research 102:130-140.
15. Detienne B, Sadykov R and Tanaka S (2016). The two-machine flowshop total completion time problem: branch-and-bound algorithms based on network-flow formulation. European Journal of Operational Research 252(3): 750-760.
16. Eberhart R and Kennedy J (1995, November). Particle swarm optimization. In Proceedings of the IEEE international conference on neural networks 4: 1942-1948.
17. Esmaeilbeigi R, Charkhgard P and Charkhgard H (2016). Order acceptance and scheduling problems in two-machine flow shops: New mixed integer programming formulations. European Journal of Operational Research 251(2): 419-431.
18. Framinan J-M and Paz P-G (2018). Order scheduling with tardiness objective: improved approximate solutions. European Journal of Operational Research 266(3): 840-850.
19. Gambardella L-M and Dorigo M (1996). Solving symmetric and asymmetric TSPs by ant colonies. In Proceedings of IEEE international conference on evolutionary computation (pp. 622-627). IEEE.
20. Graham R-L, Lawler E-L, Lenstra J-K and Kan A-R (1979). Optimization and approximation in deterministic sequencing and scheduling: a survey. In Annals of discrete mathematics 5: 287-326.
21. Holland J-H (1975) Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor. (2nd Edition, MIT Press, 1992.)
22. Kaweegitbundit P and Eguchi T (2016). Flexible job shop scheduling using genetic algorithm and heuristic rules. Journal of Advanced Mechanical Design, Systems, and Manufacturing 10(1): JAMDSM0010-JAMDSM0010.
23. Kirkpatrick S, Gelatt C-D and Vecchi M-P (1983). Optimization by simulated annealing. science 220(4598): 671-680.
24. Ku W-Y and Beck J-C (2016). Mixed integer programming models for job shop scheduling: A computational analysis. Computers & Operations Research 73: 165-173.
25. Li K, Xiao W and Yang S (2019). Minimizing total tardiness on two uniform parallel machines considering a cost constraint. Expert Systems with Applications 123: 143-153.
26. Li Y, Wang R and Xu M (2014). Rescheduling of observing spacecraft using fuzzy neural network and ant colony algorithm. Chinese Journal of Aeronautics 27(3): 678-687.
27. Lu Y and Jiang T (2019). Bi-Population Based Discrete Bat Algorithm for the Low-Carbon Job Shop Scheduling Problem. IEEE Access 7: 14513-14522.
28. Luis F-P, Perea F and Ruiz R (2017). Models and matheuristics for the unrelated parallel machine scheduling problem with additional resources. European Journal of Operational Research 260(2): 482-493.
29. MnM.Ceramic Substrates Market (2018)https://www.marketsandmarkets.com/Market-Reports/ceramic-substrate-market-6683833.html, MarketsandMarkets™:Chicago, USA.
30. Parunak H-V-D (1991). Characterizing the manufacturing scheduling problem. Journal of manufacturing systems 10(3): 241-259.
31. Qiu X and Lau H-Y (2014). An AIS-based hybrid algorithm for static job shop scheduling problem. Journal of Intelligent Manufacturing 25(3): 489-503.
32. ROGERS CORPORATION.curamik® Ceramic Substrates. https://www.rogerscorp.com/pes/curamik/products/3/curamik-Ceramic-Substrates.aspx, ROGERS CORPORATION:Arizona, USA.
33. Rostami S, Creemers S and Leus R (2019). Precedence theorems and dynamic programming for the single-machine weighted tardiness problem. European Journal of Operational Research 272(1): 43-49.
34. Safarzadeh H and Niaki S-T-A (2019). Bi-objective green scheduling in uniform parallel machine environments. Journal of Cleaner Production 217: 559-572.
35. Silva D, Scarpin C-T, Ruiz A and Pécora J-J-E (2019). Online single machine scheduling with setup times depending on the jobs sequence. Computers & Industrial Engineering 129: 251-258.
36. SMAI. Year-End Total Equipment Forecast. http://www1.semi.org/zh/node/94816, Semiconductor Equipment and Materials International: Milpitas, USA.
37. Tan M, Duan B and Su Y (2018). Economic batch sizing and scheduling on parallel machines under time-of-use electricity pricing. Operational Research 18(1): 105-122.
38. Wang S, and Ye B (2019). Exact methods for order acceptance and scheduling on unrelated parallel machines. Computers & Operations Research 104: 159-173.
39. Wang W-P and Chen Z (2008). A neuro-fuzzy based forecasting approach for rush order control applications. Expert Systems with Applications 35(1-2):223-234.
40. Weaver A, Greeno C-G, Goughler D-H, Yarzebinski K, Zimmerman T and Anderson C (2013). The impact of system level factors on treatment timeliness: utilizing the Toyota production system to implement direct intake scheduling in a semi-rural community mental health clinic. The journal of behavioral health services & research 40(3): 294-305.
41. WSTS (2018)Semiconductor market forecast. https://www.wsts.org/, World Semiconductor Trade Statistics: North Carolina, USA.
42. Yang Z, Ma Z and Wu S (2016) Optimized flowshop scheduling of multiple production lines for precast production. Automation in Construction 72: 321-329.
43. Zhou H, Pang J, Chen P-K and Chou F-D (2018). A modified particle swarm optimization algorithm for a batch-processing machine scheduling problem with arbitrary release times and non-identical job sizes. Computers & Industrial Engineering 123: 67-81.
指導教授 王啓泰(Chi-Tai Wang) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明