參考文獻 |
[1] R. J. D. b. Dahm, "Friedrich Miescher and the discovery of DNA," vol. 278, no. 2, pp. 274-288, 2005.
[2] J. D. Watson and F. H. J. N. Crick, "Molecular structure of nucleic acids," vol. 171, no. 4356, pp. 737-738, 1953.
[3] S. Hawgood, I. G. Hook-Barnard, T. C. O’Brien, and K. R. J. S. t. m. Yamamoto, "Precision medicine: beyond the inflection point," vol. 7, no. 300, pp. 300ps17-300ps17, 2015.
[4] A. Leslie, S. Arnott, R. Chandrasekaran, and R. J. J. o. m. b. Ratliff, "Polymorphism of DNA double helices," vol. 143, no. 1, pp. 49-72, 1980.
[5] R. C. Lee, R. L. Feinbaum, and V. J. c. Ambros, "The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14," vol. 75, no. 5, pp. 843-854, 1993.
[6] L.-A. MacFarlane and P. J. C. g. R Murphy, "MicroRNA: biogenesis, function and role in cancer," vol. 11, no. 7, pp. 537-561, 2010.
[7] K. B. J. C. c. i. Reddy, "MicroRNA (miRNA) in cancer," vol. 15, no. 1, p. 38, 2015.
[8] F. Magri, F. Vanoli, and S. Corti, miRNA in spinal muscular atrophy pathogenesis and therapy. 2017.
[9] D. G. McDowell, N. A. Burns, and H. C. J. N. a. r. Parkes, "Localised sequence regions possessing high melting temperatures prevent the amplification of a DNA mimic in competitive PCR," vol. 26, no. 14, pp. 3340-3347, 1998.
[10] J. Kang, M. S. Lee, D. G. J. J. o. b. Gorenstein, and b. methods, "The enhancement of PCR amplification of a random sequence DNA library by DMSO and betaine: application to in vitro combinatorial selection of aptamers," vol. 64, no. 2, pp. 147-151, 2005.
[11] T. Mamedov et al., "A fundamental study of the PCR amplification of GC-rich DNA templates," vol. 32, no. 6, pp. 452-457, 2008.
[12] A. G. Wilson, J. A. Symons, T. L. McDowell, H. O. McDevitt, and G. W. J. P. o. t. N. A. o. S. Duff, "Effects of a polymorphism in the human tumor necrosis factor α promoter on transcriptional activation," vol. 94, no. 7, pp. 3195-3199, 1997.
[13] D. L. J. N. m. Thomas, "Global control of hepatitis C: where challenge meets opportunity," vol. 19, no. 7, p. 850, 2013.
[14] S. Obika et al., "Synthesis of 2′-O, 4′-C-methyleneuridine and-cytidine. Novel bicyclic nucleosides having a fixed C3,-endo sugar puckering," vol. 38, no. 50, pp. 8735-8738, 1997.
[15] E. Várallyay, J. Burgyán, and Z. J. M. Havelda, "Detection of microRNAs by Northern blot analyses using LNA probes," vol. 43, no. 2, pp. 140-145, 2007.
[16] G. Obernosterer, J. Martinez, and M. J. N. p. Alenius, "Locked nucleic acid-based in situ detection of microRNAs in mouse tissue sections," vol. 2, no. 6, p. 1508, 2007.
[17] M. J. Søe, T. Møller, M. Dufva, K. J. J. o. H. Holmstrøm, and Cytochemistry, "A sensitive alternative for microRNA in situ hybridizations using probes of 2′-O-methyl RNA+ LNA," vol. 59, no. 7, pp. 661-672, 2011.
[18] P. Mouritzen, A. T. Nielsen, H. M. Pfundheller, Y. Choleva, L. Kongsbak, and S. J. E. r. o. m. d. Møller, "Single nucleotide polymorphism genotyping using locked nucleic acid (LNA™)," vol. 3, no. 1, pp. 27-38, 2003.
[19] P. E. Nielsen, M. Egholm, R. H. Berg, and O. J. S. Buchardt, "Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide," vol. 254, no. 5037, pp. 1497-1500, 1991.
[20] A. Ray and B. J. T. F. J. Norden, "Peptide nucleic acid (PNA): its medical and biotechnical applications and promise for the future," vol. 14, no. 9, pp. 1041-1060, 2000.
[21] H. Stender et al., "Direct detection and identification of Mycobacterium tuberculosis in smear-positive sputum samples by fluorescence in situ hybridization (FISH) using peptide nucleic acid (PNA) probes," vol. 3, no. 9, pp. 830-837, 1999.
[22] K. Oliveira, G. W. Procop, D. Wilson, J. Coull, and H. J. J. o. c. m. Stender, "Rapid identification of Staphylococcus aureus directly from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes," vol. 40, no. 1, pp. 247-251, 2002.
[23] T.-L. Li et al., "Designed phosphate-methylated oligonucleotides as PCR primers for SNP discrimination," pp. 1-10, 2019.
[24] Y.-n. Lin, "Phosphate-Methylated DNA as Neutralized DNA (nDNA):Synthesis, Properties and Potential Applications," Department of Chemical and Materials Engineering,National Central University, 2015.
[25] L. H. Koole et al., "Synthesis of phosphate-methylated DNA fragments using 9-fluorenylmethoxycarbonyl as transient base protecting group," vol. 54, no. 7, pp. 1657-1664, 1989.
[26] Y.-J. W. C. Chen, "Studies of thermodynamic and mechanism for neutralized DNA (nDNA)/DNA and DNA/DNA duplex formation. ," Master degree, Department of Chemical and Materials Engineering, National Central University, 2016.
[27] M. P. R. Paul S. Miller, * Akira Murakami, Kathleen R. Blake, Shwu-Bin Lin, and Cheryl H. Agris, "Solid-Phase Syntheses of Oligodeoxyribonucleoside Methylphosphonates1," Biochemistry, 1986.
[28] H. M. Moody, M. H. van Genderen, L. H. Koole, H. J. Kocken, E. M. Meijer, and H. M. Buck, "Regiospecific inhibition of DNA duplication by antisense phosphate-methylated oligodeoxynucleotides," Nucleic Acids Research, vol. 17, no. 12, pp. 4769-4782, 1989.
[29] B. R. Meade et al., "Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications," Nat Biotechnol, vol. 32, no. 12, pp. 1256-61, Dec 2014.
[30] Y.-H. Chang, "Specificity enhancement of PCR and qPCR by using neutralized DNA (nDNA) as primer or targeting probe," master degree, Department of Chemical and Materials Engineering., National Central University 2017.
[31] L.-C. Li et al., "A single nucleotide polymorphism in the E-cadherin gene promoter alters transcriptional activities," vol. 60, no. 4, pp. 873-876, 2000.
[32] D. Fraga, T. Meulia, and S. J. C. p. e. l. t. Fenster, "Real‐time PCR," no. 1, pp. 10.3. 1-10.3. 34, 2008.
[33] J. G. J. M. Gall, "The origin of in situ hybridization–a personal history," vol. 98, pp. 4-9, 2016.
[34] M. Tanner et al., "Chromogenic in situ hybridization: a practical alternative for fluorescence in situ hybridization to detect HER-2/neu oncogene amplification in archival breast cancer samples," vol. 157, no. 5, pp. 1467-1472, 2000.
[35] J. M. Levsky and R. H. J. J. o. c. s. Singer, "Fluorescence in situ hybridization: past, present and future," vol. 116, no. 14, pp. 2833-2838, 2003.
[36] J. B. Bramsen et al., "Improved silencing properties using small internally segmented interfering RNAs," vol. 35, no. 17, pp. 5886-5897, 2007.
[37] J. T. Pena et al., "miRNA in situ hybridization in formaldehyde and EDC–fixed tissues," vol. 6, no. 2, p. 139, 2009.
[38] M. O Urbanek, A. U Nawrocka, and W. J Krzyzosiak, Small RNA Detection by in Situ Hybridization Methods. 2015, pp. 13259-13286.
[39] S. Fontenete et al., "Application of locked nucleic acid-based probes in fluorescence in situ hybridization," Appl Microbiol Biotechnol, vol. 100, no. 13, pp. 5897-906, Jul 2016.
[40] M. Bogdanovska-Todorovska, G. Petrushevska, V. Janevska, L. Spasevska, and S. J. B. j. o. b. m. s. Kostadinova-Kunovska, "Standardization and optimization of fluorescence in situ hybridization (FISH) for HER-2 assessment in breast cancer: A single center experience," vol. 18, no. 2, p. 132, 2018.
[41] A. N. Silahtaroglu et al., "Detection of microRNAs in frozen tissue sections by fluorescence in situ hybridization using locked nucleic acid probes and tyramide signal amplification," vol. 2, no. 10, p. 2520, 2007.
[42] J. Ge, L.-L. Zhang, S.-J. Liu, R.-Q. Yu, and X. J. A. c. Chu, "A highly sensitive target-primed rolling circle amplification (TPRCA) method for fluorescent in situ hybridization detection of microRNA in tumor cells," vol. 86, no. 3, pp. 1808-1815, 2014.
[43] F. Wang et al., "RNAscope: a novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues," vol. 14, no. 1, pp. 22-29, 2012.
[44] I. Balcells, S. Cirera, and P. K. J. B. b. Busk, "Specific and sensitive quantitative RT-PCR of miRNAs with DNA primers," vol. 11, no. 1, p. 70, 2011.
[45] B. S. Nielsen et al., "High levels of microRNA-21 in the stroma of colorectal cancers predict short disease-free survival in stage II colon cancer patients," vol. 28, no. 1, pp. 27-38, 2011.
[46] G. Obernosterer, P. J. Leuschner, M. Alenius, and J. J. R. Martinez, "Post-transcriptional regulation of microRNA expression," vol. 12, no. 7, pp. 1161-1167, 2006.
[47] J.-J. Zhao et al., "Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis," vol. 25, no. 1, pp. 13-20, 2009.
[48] M.-W. Wu, "The thermodynamic aspects of the Na+ and the mismatch discrimination on the formation of double stranded DNA containing site-specific methyl phosphotriester linkages," 2018.
[49] A. Válóczi, C. Hornyik, N. Varga, J. Burgyan, S. Kauppinen, and Z. J. N. a. r. Havelda, "Sensitive and specific detection of microRNAs by northern blot analysis using LNA-modified oligonucleotide probes," vol. 32, no. 22, pp. e175-e175, 2004.
[50] T.-L. Li, "MicroRNA In Situ Hybridization with Phosphate-methylated oligonucleotides (nDNA) Probe," Master degree, Department of Chemical and Materials Engineering, National Central University, 2018.
[51] K. Ziomek, E. Kierzek, E. Biała, and R. J. B. c. Kierzek, "The thermal stability of RNA duplexes containing modified base pairs placed at internal and terminal positions of the oligoribonucleotides," vol. 97, no. 2-3, pp. 233-241, 2002.
[52] U. Singh et al., "General principles and methods for routine automated microRNA in situ hybridization and double labeling with immunohistochemistry," vol. 89, no. 4, pp. 259-266, 2014.
[53] W. Tang et al., "MicroRNA-29a promotes colorectal cancer metastasis by regulating matrix metalloproteinase 2 and E-cadherin via KLF4," vol. 110, no. 2, p. 450, 2014.
[54] J. Zhao, Y. Zhang, and G. J. C. B. Zhao, "Emerging role of microRNA-21 in colorectal cancer," vol. 15, no. 3, pp. 219-226, 2015.
[55] S. Bommarito, N. Peyret, and J. S. J. N. a. r. Jr, "Thermodynamic parameters for DNA sequences with dangling ends," vol. 28, no. 9, pp. 1929-1934, 2000.
[56] P. S. Miller, L. T. Braiterman, and P. O. J. B. Ts’o, "Effects of a trinucleotide ethyl phosphotriester, Gmp (Et) Gmp (Et) U, on mammalian cells in culture," vol. 16, no. 9, pp. 1988-1996, 1977.
[57] M. Y. Shah, A. Ferrajoli, A. K. Sood, G. Lopez-Berestein, and G. A. Calin, "microRNA Therapeutics in Cancer — An Emerging Concept," EBioMedicine, vol. 12, pp. 34-42, 2016.
[58] C. K. Raymond, B. S. Roberts, P. Garrett-Engele, L. P. Lim, and J. M. J. R. Johnson, "Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs," vol. 11, no. 11, pp. 1737-1744, 2005.
[59] A. J. Kriegel, Y. Liu, Y. Fang, X. Ding, and M. J. P. g. Liang, "The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury," vol. 44, no. 4, pp. 237-244, 2012.
[60] J. Zhang et al., "MiR-29c mediates epithelial-to-mesenchymal transition in human colorectal carcinoma metastasis via PTP4A and GNA13 regulation of β-catenin signaling," vol. 25, no. 11, pp. 2196-2204, 2014.
[61] S. Kwok et al., "Effects of primer-template mismatches on the polymerase chain reaction: human immunodeficiency virus type 1 model studies," vol. 18, no. 4, pp. 999-1005, 1990.
[62] S. J. Johnson and L. S. J. C. Beese, "Structures of mismatch replication errors observed in a DNA polymerase," vol. 116, no. 6, pp. 803-816, 2004.
[63] M.-M. Huang, N. Arnheim, and M. F. J. N. a. r. Goodman, "Extension of base mispairs by Taq DNA polymerase: implications for single nucleotide discrimination in PCR," vol. 20, no. 17, pp. 4567-4573, 1992. |