參考文獻 |
[1] D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, S.L. Rudaz, Illumination with solid state lighting technology, IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, Issue 2, pp. 310–320, 2002.
[2] A. A. Setlur, A. M. Srivastava, and H. A. Comanzo, High luminosity phosphor blends for generating white light from near-UV/blue light-emitting devices, US Patent, Pub. No.: US 20040150316A1, 2004.
[3] T. Kawabata, T. Matsuda, and S. Koike, GaN blue light emitting diodes prepared by metalorganic chemical vapor deposition, Journal of applied physics, Vol. 56, Issue 8, pp. 2367-2368, 1984.
[4] S. Kamiyama, M. Iwaya, N. Hayashi, T. Takeuchi, H. Amano, I. Akasaki, Y. Watanabe, S. Kaneko and N. Yamada, Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure, Journal of crystal growth, Vol. 223, Issue1-2, pp. 83-91, 2001.
[5] J. H. Kang, M. Ebaid, D. K. Jeong, J. K. Lee, and S. W. Ryu, Efficient energy harvesting of a GaN p–n junction piezoelectric generator through suppressed internal field screening, Journal of Materials Chemistry C, Vol. 4, Issue 15, pp. 3337-3341, 2016.
[6] M. Pophristic, F. H. Long, C. Tran, I. T. Ferguson, and R. F. Karlicek Jr, Time-resolved photoluminescence measurements of InGaN light-emitting diodes, Applied Physics Letters, Vol.73, No.24, pp. 3550-3552, 1998.
[7] I. Akasaki, H. Amano, M. Kito, and K. Hiramatsu, Photoluminescence of Mg-doped p-type GaN and electroluminescence of GaN pn junction LED, Journal of luminescence, Vol. 48, pp. 666-670, 1991.
[8] J. H. Lin, S. J. Huang, Y. K. Su, and K. W. Huang, The improvement of GaN-based LED grown on concave nano-pattern sapphire substrate with SiO2 blocking layer. Applied Surface Science, Vol. 354, pp. 168-172, 2015.
[9] T. Sugahara, H. Sato, M. Hao, Y. Naoi, S. Kurai, S. Tottori, K. Yamashita, K. Nishino, L. T. Romano, and S. Sakai, Direct evidence that dislocations are non-radiative recombination centers in GaN, Japanese Journal of Applied Physics, Vol. 37, No. 4A, 1998.
[10] E. Matioli, and C. Weisbuch, Active Region Part A. Internal Quantum Efficiency in LEDs, In III-Nitride Based Light Emitting Diodes and Applications, Topics in Applied Physics, pp. 121-152, Publisher Name Springer, Dordrecht, 2013.
[11] H. J. Queisser, Recombination at deep traps, Solid-State Electronics, Vol, 21, Issue 11-12, pp. 1495-1503, 1978.
[12] A. Y. Kim, W. Götz, D. A. Steigerwald, J. J. Wierer, N. F. Gardner, J. Sun, S.A. Stockman, P.S. Martin, M.R. Krames, R.S. Kern, and F. M. Steranka, Performance of High‐Power AlInGaN Light Emitting Diodes, Physica Status Solidi (a), Vol. 188, Issue 1, pp. 15-21, 2001.
[13] R. C. Powell, N. E. Lee, and J. E. Greene, Growth of GaN (0001) 1× 1 on Al2O3 (0001) by gas‐source molecular beam epitaxy, Applied Physics Letters, Vol. 60, Issue 20, pp. 2505-2507, 1992.
[14] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, C. F. Lin, and R. H. Horng, Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template, Applied Physics Letters, Vol. 89, Issue 16, p. 161105, 2006.
[15] C. H. Chiu, H. H. Yen, C. L. Chao, Z. Y. Li, P. C. Yu, H. C. Kuo, T. C. Lu, S. C. Wang, K. M. Lau, and S. J. Cheng, Nanoscale epitaxial lateral overgrowth of GaN-based light-emitting diodes on a SiO2 nanorod-array patterned sapphire template, Applied Physics Letters, Vol. 93, Issue 8, p. 081108, 2008.
[16] N. Okada, Y. Inomata, H. Ikeuchi, S. Fujimoto, H. Itakura, S. Nakashima, R. Kawamura, and K. Tadatomo, Characterization of high-quality relaxed flat InGaN template fabricated by combination of epitaxial lateral overgrowth and chemical mechanical polishing, Journal of Crystal Growth, Vol. 512, pp. 147-151, 2019.
[17] S. Zhou, S. Yuan, S. Liu, and H. Ding, Improved light output power of LEDs with embedded air voids structure and SiO2 current blocking layer, Applied Surface Science, Vol. 305, pp. 252-258, 2014.
[18] P. Mao, F. Sun, H. Yao, J. Chen, B. Zhao, B. Xie, M. Han, and G. Wang, Extraction of light trapped due to total internal reflection using porous high refractive index nanoparticle films, Nanoscale, Vol. 6, Issue 14, pp. 8177-8184, 2014.
[19] M. Ma, F. W. Mont, X. Yan, J. Cho, E. F. Schubert, G. B. Kim, and C. Sone, Effects of the refractive index of the encapsulant on the light-extraction efficiency of light-emitting diodes, Optics Express, Vol. 19, Issue S5, pp. A1135-A1140, 2011.
[20] M. Leszczynski, T. Suski, H. Teisseyre, P. Perlin, I. Grzegory, J. Jun, and T. D. Moustakas, Thermal expansion of gallium nitride, Journal of Applied Physics, Vol. 76, Issue 8, pp. 4909-4911, 1994.
[21] A. D. Bykhovski, B. L. Gelmont, and M. S. Shur, Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices, Journal of Applied Physics, Vol. 81, Issue 9, p. 6332, 1997.
[22] T. Sano, T. Doi1, S. A. Inada, T. Sugiyama, Y. Honda, H. Amano, and T. Yoshino, High internal quantum efficiency blue-green light-emitting diode with small efficiency droop fabricated on low dislocation density GaN substrate, Japanese Journal of Applied Physics, Vol. 52, No. 8S, p. 08JK09, 2013.
[23] C. He, W. Zhao, K. Zhang, L. He, H. Wu, N. Liu, S. Zhang, X. Liu, and Z. Chen, High-quality GaN epilayers achieved by facet-controlled epitaxial lateral overgrowth on sputtered AlN/PSS templates, ACS Applied Materials & Interfaces, Vol. 9, Issue 49, pp. 43386-43392, 2017.
[24] J. Y. Cho, J. S. Kim, Y. D. Kim, H. J. Cha, and H. Lee, Fabrication of oxide-based nano-patterned sapphire substrate to improve the efficiency of GaN-based of LED, Japanese Journal of Applied Physics, Vol. 54, No. 2S, p. 02BA04, 2015.
[25] H. Liu, Y. Li, S. Wang, L. Feng, H. Xiong, X. Su, and F. Yun, Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates, AIP Advances, Vol. 6, Issue 7, p. 075016, 2016.
[26] J. Shen, D. Zhang, Y. Wang, and Y. Gan, AFM and SEM Study on Crystallographic and Topographical Evolution of Wet-Etched Patterned Sapphire Substrates (PSS) I. Cone-Shaped PSS Etched in Sulfuric Acid and Phosphoric Acid Mixture (3: 1) at 230° C, ECS Journal of Solid State Science and Technology, Vol. 6, Issue 1, pp. R24-R34, 2017.
[27] H. Hu, S. Zhou, X. Liu, Y. Gao, C. Gui, and S. Liu, Effects of GaN/AlGaN/Sputtered AlN nucleation layers on performance of GaN-based ultraviolet light-emitting diodes, Scientific Reports, 7, p. 44627, 2017.
[28] R. Peng, X. Meng, S. Xu, J. Zhang, P. Li, J. Huang, J. Du, Y. Zhao, X. Fan, and Y. Hao, Study on Dislocation Annihilation Mechanism of the High-Quality GaN Grown on Sputtered AlN/PSS and Its Application in Green Light-Emitting Diodes, IEEE Transactions on Electron Devices, Vol. 66, Issue 5, pp. 2243-2248, 2019.
[29] S. C. Chang, C. C. Chen, T. C. Chang, K. L. Lin, T. C. Lu, L. Chang, and Y. C. Sermon Wu, Growth of GaN on Patterned Sapphire Substrate with High-Index Facets, ECS Journal Solid State Science Technology, Vol. 4, Issue 12, pp. R159-R161, 2015.
[30] D. S. Kim, W. S. Jeong, H. Ko, J. S. Lee, and D. Byun, Pretreatment by selective ion-implantation for epitaxial lateral overgrowth of GaN on patterned sapphire substrate, Thin Solid Films, Vol. 641, pp. 2-7, 2017.
[31] T. Jiang, S. Xu, J. Zhang, P. Li, J. Huang, Z. Ren, M. Fu, J. Zhu, H. Shan, Y. Zhao, and Y. Hao, Spatial distribution of crystalline quality in N-type GaN grown on patterned sapphire substrate, Optical Materials Express, Vol. 6, Issue 6, pp. 1817-1826, 2016.
[32] Y. Zhang, J. Zhang, Y. Zheng, C. Sun, K. Tian, C. Chu, Z. Zhang, J. Liu, and W. Bi, The Effect of Sapphire Substrates on Omni-Directional Reflector Design for Flip-Chip Near-Ultraviolet Light-Emitting Diodes, IEEE Photonics Journal, Vol. 11, Issue 1, pp. 1-9, 2019.
[33] C. C. Sun, Y. Y. Chang, C. Y. Lu, H. Y. Lin, Z. Y. Ting, , T. H. Yang, T. Y. Chung, and Y. W. Yu, Spatial-coded phosphor coating for high-efficiency white LEDs, IEEE Photonics Journal, Vol. 9, No. 3, pp. 1-9, 2017.
[34] C. F. Lai, J. S. Li, and C. W. Shen, High-efficiency robust free-standing composited phosphor films with 2D and 3D nanostructures for high-power remote white LEDs, ACS Applied Materials & Interfaces, Vol. 9, Issue 5, pp. 4851-4859, 2017.
[35] N. D. Quoc Anh, M. F. Lai, H. Y. Ma, and H. Y. Lee, Enhancing of correlated color temperature uniformity for multi-chip white-light LEDs by adding SiO2 in phosphor layer, Journal of the Chinese Institute of Engineers, Vol. 38, Issue 3, pp. 297-303, 2015.
[36] X. Mou, N. Narendran, Y. Zhu, and J. P. Freyssinier, Evaluation of OLED and edge-lit LED lighting panels, In Fifteenth International Conference on Solid State Lighting and LED-based Illumination Systems, International Society for Optics and Photonics, Vol. 9954, p. 995403, 2016.
[37] S. W. Huang, C. C. Chang, H. Y. Lin, X. F. Li, Y. C. Lin, and C. Y. Liu, Fabrication of nano-cavity patterned sapphire substrate using self-assembly meshed Pt thin film on c-plane sapphire substrate, Thin Solid Films, Vol. 628, pp. 127-131, 2017.
[38] L. Zhang, F. Xu, J. Wang, C. He, W. Guo, M. Wang, B. Sheng, L. Lu, Z. Qin, X. Wang, and B. Shen, High-quality AlN epitaxy on nano-patterned sapphire substrates prepared by nano-imprint lithography, Scientific Reports, 6, p. 35934, 2016.
[39] S. X. Jiang, Z. Z. Chen, X. Z. Jiang, X. X. Fu, S. Jiang, Q. Q. Jiao, T. J. Yu, and G. Y. Zhang, Study on the morphology and shape control of volcano-shaped patterned sapphire substrates fabricated by imprinting and wet etching, CrystEngComm, Vol. 17, Issue 16, pp. 3070-3075, 2015.
[40] S. W. Huang, Y. J. Wu, H. Y. Lin, S. F. Li, Y. J. Chen, and C. Y. Liu, Etching Three-Dimensional Pattern on Sapphire Substrate by Dynamic Self-Masking Alunogen Compound, ECS Solid State Letters, Vol. 4, Issue 6, pp. R35-R38, 2015.
[41] F. Dwikusuma, D. Saulys, and T. F. Kuech, Study on Sapphire Surface Preparation for III-Nitride Heteroepitaxial Growth by Chemical Treatments, Journal of The Electrochemical Society, Vol. 149, Issue 11, p. G603, 2002.
[42] H. Y. Lin, Y. J. Chen, C. C. Chang, X. F. Li, S. C. Hsu, and C. Y. Liu, Pattern-coverage effect on light extraction efficiency of GaN LED on patterned-sapphire substrate, Electrochemical and Solid-State Letters, Vol. 15, Issue 3, pp. H72-H74, 2011.
[43] D. Tian, W. Yan, X. Cao, J. Yu, R. Xu, Morphology changes of transition-metal-substituted aluminophosphate molecular sieve AlPO4-5 crystals, Chemistry of Materials, Vol. 20, Issue 6, pp. 2160-2164, 2008.
[44] T. H. Yang, R. Aggarwal, A. Gupta, H. Zhou, R. J. Narayan, and J. Narayan, Semiconductor-metal transition characteristics of VO2 thin films grown on c-and r-sapphire substrates, Journal of Applied Physics, Vol. 107, Issue 5, p. 053514, 2010.
[45] B. Pokroy, and J. Aizenberg, Calcite shape modulation through the lattice mismatch between the self-assembled monolayer template and the nucleated crystal face, CrystEngComm, Vol. 9, Issue 12, pp. 1219-1225, 2007.
[46] J. Aizenberg, A. J. Black, and G. M. Whitesides, Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver, Journal of the American Chemical Society, Vol. 121, Issue 18, pp. 4500-4509, 1999.
[47] S. Furukawa, K. Ochi, H. Luo, M. Miyazaki, and T. Komatsu, Selective stereochemical catalysis controlled by specific atomic arrangement of ordered alloys, ChemCatChem, Vol. 7, Issue 21, pp. 3472-3479, 2015.
[48] G. Liu, C. Y. Jimmy, G. Q. M. Lu, and H. M. Cheng, Crystal facet engineering of semiconductor photocatalysts: motivations, advances and unique properties, Chemical Communications, Vol. 47, Issue 24, pp. 6763-6783, 2011.
[49] Y. Xia, Y. Xiong, B. Lim, and S. E. Skrabalak, Shape‐controlled synthesis of metal nanocrystals: simple chemistry meets complex physics?, Angewandte Chemie International Edition, Vol. 48, Issue 1, pp. 60-103, 2009.
[50] J. Behari, Principles of nanoscience: an overview, Indian Journal of Experimental Biology, Vol. 48, pp. 1008-1019, 2010.
[51] G. Cao, and Y. Wang, Nanostructures and Nanomaterials: Synthesis, Properties, and Applications, World Scientific Publishing Co. Pte. Ltd., Vol. 2, pp. 21-23, 2004.
[52] R. Docherty, G. Clydesdale, K. J. Roberts, and P. Bennema, Application of Bravais-Friedel-Donnay-Harker, attachment energy and Ising models to predicting and understanding the morphology of molecular crystals, Journal of Physics D: Applied Physics, Vol. 24, No. 2, p. 89, 1991.
[53] Y. Xia, B. Chen, X. Jiao, and D. Chen, Large-scale synthesis and formation mechanism study of basic aluminium sulfate microcubic crystals, Physical Chemistry Chemical Physics, Vol. 16, Issue 12, pp. 5866-5874, 2014.
[54] J. H. Donnay, and D. Harker, A new law of crystal morphology extending the law of Bravais, American Mineralogist: Journal of Earth and Planetary Materials, Vol. 22, No. 5, pp. 446-467, 1937.
[55] A. Bravais, Etudes Crystallographiques, Paris, 1913.
[56] S. X. M. Boerrigter, H. M. Cuppen, R. I. Ristic, J. N. Sherwood, P. Bennema, and H. Meekes, Explanation for the supersaturation-dependent morphology of monoclinic paracetamol, Crystal Growth & Design, Vol. 2, No. 5, pp. 357-361, 2002.
[57] C. C. Sun, Y. Y. Chang, T. H. Yang, T. Y. Chung, C. C. Chen, T. X. Lee, D. R. Li, C. Y. Lu, Z. Y. Ting, B. Glorieux, Y. C. Chen, K. Y. Lai and C. Y. Liu, Packaging efficiency in phosphor-converted white LEDs and its impact to the limit of luminous efficacy, Journal of Solid State Lighting, Vol. 1, Issue 1, p. 19, 2014.
[58] X. F. Li, S. W. Huang, H. Y. Lin, C. Y. Lu, S. F. Yang, C. C. Sun, and C. Y. Liu, Fabrication of patterned sapphire substrate and effect of light emission pattern on package efficiency, Optical Materials Express, Vol. 5, Issue 8, pp. 1784-1791, 2015.
[59] R. Tran, Z. Xu, B. Radhakrishnan, D. Winston, W. Sun, K. A. Persson, and S. P. Ong, Surface energies of elemental crystals, Scientific data, 3, No. 160080, 2016.
[60] C. Rottman, and M. Wortis, Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions, Physics Reports, Vol. 103, Issue 1-4, pp. 59-79, 1984.
[61] L. D. Marks, Modified Wulff constructions for twinned particles, Journal of Crystal Growth, Vol. 61, Issue 3, pp. 556-566, 1983.
[62] F. Lu, B. Zhao, R. Li, and W. Ruan, Crystal growth of barium nitrate on thiol-terminated self-assembled monolayers and a Raman spectroscopic investigation of the crystal facets, Journal of Crystal Growth, Vol. 426, pp. 33-37, 2015.
[63] M. X. Zhang, P. M. Kelly, M. A. Easton, and J. A. Taylor, Crystallographic study of grain refinement in aluminum alloys using the edge-to-edge matching model, Acta Materialia, Vol. 53, Issue 5, pp. 1427-1438, 2005.
[64] R. G. Banal, M. Imura, and Y. Koide, Formation Mechanism and Elimination of Small‐Angle Grain Boundary in AlN Grown on (0001) Sapphire Substrate, Study of Grain Boundary Character, p. 43, 2017.
[65] K. H. Kim, K. C. Park, and D. Y. Ma, Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering, Journal of Applied Physics, Vol. 81, Issue 12, pp. 7764-7772, 1997.
|