博碩士論文 106223049 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.149.214.32
姓名 林子吟(Zih-Yin Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 利用機械力學法合成類沸石咪唑骨架材料-8及酵素包覆應用之研究
相關論文
★ 天然物 Faveline methyl ether 之合成研究★ 人體突變生長激素受質膜內區段與半乳醣凝集素-12的表現、純化與結晶
★ 研究新型奈米粒子載體結合核糖核酸干擾調控在細胞內蛋白之表現★ 具芳香環胺基酸與內環狀結構之中孔洞材料的合成、鑑定與應用
★ 以手性亞碸催化劑進行醛的不對稱乙基化反應之研究★ 噁噻硼烷-氯化鎵錯合物催化不對稱 Diels-Alder 反應之研究
★ 開發心肌缺氧後再灌流傷害用藥與近紅外光染劑的高效率微脂體包覆方法★ Total Synthesis of Pikrosalvin, Simplexene C, D and Synthetic Studies toward Swartziarboreol G and Simplexene B
★ Understanding the Depolymerization of Biomass-derived Polysaccharides: Recrystallization while Hydrolyzing Polysaccharides★ 以手性有機硫催化劑進行不對稱環丙烷化反應並應用於合成吡咯類化合物之研究
★ 一、 以掌性硫化合物進行不對稱 [4+1] 環化反應並應用在吲哚啉類化合物的合成研究二、掌性共價有機框架材料的設計與合成並應用在多烯環化反應★ 第一章 以手性硫催化劑進行不對稱 [4+1] 環化反應並應用於合成吲哚類化合物之研究 第二章 設計與合成手性共價有機骨架並應用至不對稱多烯環化反應
★ 以開環置換聚合反應合成手性共價有機框架材料並將其應用於不對稱催化多烯環化反應之研究★ 利用光固化材料調控R3CE的界面共價修飾及其對三維細胞培養的影響
★ 流感病毒血球凝集素(II)膜外區域之物理化學特性分析★ 中孔洞材料SBA-15及其官能基化衍生材料對溶液中污染物之吸附應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2024-7-19以後開放)
摘要(中) 金屬有機骨架材料(Metal-organic frameworks, MOFs)是近年來興起的一項孔洞材料,由於其擁有高比表面積、良好的熱及化學穩定性等優點,因而被大量的研究與發表。其中類沸石咪唑骨架材料-8(Zeolitic imidazolate frameworks-8, ZIF-8)是MOFs材料中的一種,是以鋅離子和2-甲基咪唑(2-methylimidazole, HmIm)所構築而成的三維結構,然而由於其具有良好的氣體吸附力,故已被廣泛地報導與應用。
近期文獻指出,利用原位創新法(de novo)所合成CAT@ZIF-8複合材料,因ZIF-8材料本身為疏水性材料,會導致過氧化氫酶(Catalase, CAT)失去活性。且在經過文獻查找後發現,在pH大於12的強鹼性環境中,過氧化氫酶會變性失去原本之構形,然而我們推斷在原位創新法的合成過程中,2-甲基咪唑的溶液強鹼性可能會導致過氧化氫酶的失活,故本研究希望透過機械力化學法之少量溶劑特性來合成出CAT@ZIF-8,以提升此複合材料之酵素活性。
MOFs材料常見的合成方式有傳統加熱法(Convectional heating)、機械力化學法(Mechanochemistry)、超音波化學法(Sonochemistry)、微波輔助加熱法(Microwave-assisted heating)及電化學法(Electrochemistry),而本研究使用原位創新法及機械力學法進行合成,同時對比機械力學法與原位創新法所合成複合材料的活性差異,探討CAT@ZIF-8中酵素失活的其他原因。
本研究首先以機械力化學合成法(Mechanochemistry)為重心,使用ZIF-8材料作為研究模板,來探討此材料以機械力學法合成之優化條件,試圖改善以機械力學法合成MOFs材料時,其外觀形貌的完整性與顆粒聚集之現象。
最後,本研究內容成功尋找了ZIF-8材料的合成優化條件,改良材料本身的外觀形貌與顆粒聚集,之後再以機械力學法合成CAT@ZIF-8,並相對於原位創新法合成之複合材料,成功地提升其活性,將活性係數kobs值自1.0×10-5 s-1提高至1.3×10-3 s-1,期望後續研究能繼續優化此複合材料活性,且將這樣的概念延伸至其他MOFs材料或酵素,拓展酵素固定化之應用。 
摘要(英) Metal-organic frameworks (MOFs) are porous material that have emerged in recent years. Because of its high surface area, superior thermal stability and chemical stability, it has been extensively researched and published. Zeolitic imidazolate frameworks-8 (ZIF-8) is a class of MOFs, which is a three-dimensional structure composed of zinc ions and 2-methylimidazole. Because of its high gas storage capacity, superior thermal and chemical stability, this material has been widely used and reported.
A recent literature indicates that the Catalase(CAT)@ZIF-8 biocomposite synthesized by de novo approach, water-based and mild condition, showed undetectable biological activity which majorly resulted from the hydrophobic surface of ZIF-8. Interestingly, one report addressed that the enzyme will be denatured and lost its bioactivity when it was incubated at pH 12 or higher. Thus, we develop a new concept that catalases with no bioactivity due to under strong basic synthetic condition which created by the 2-methylimidazole dissociation under water solvent. The proof-of-concept design is demonstrated by embedding catalase molecules into uniformly sized ZIF-8 crystals via a mechanochemical approach because of water unnecessary during this synthesis.
Several synthetic methods are for obtaining MOF material, such as convectional heating, mechanochemistry, sonochemistry, microwave-assisted heating and electrochemistry etc. Importantly, in this study, we focused on harvesting ZIF-8 particles with morphology and less aggregation phenomenon by use of optimal grinding conditions as well as compared the biological activity of enzyme biocomposites which are synthesized by mechanochemistry and de novo approach, respectively. In addition to the factor of basicity, we also investigated other factors, i.e., ligand effect, to deactivate enzymes.
Finally, the biocomposite of CAT@ZIF-8 with good morphology and less aggregation has been synthesized via mechanochemical method. It is worth noting here that CAT@ZIF-8 sample prepared by mechanochemical method shows an observed rate constant (kobs) of 1.3×10-3 s-1. The low activity (1.0×10-5 s-1) is observed for the sample prepared using de novo. The future studies will continue to optimize synthetic condition for preparing this catalase biocomposite with better bioactivity and then extend this concept to other MOFs materials or enzymes, expanding the applications for enzyme immobilization.
關鍵字(中) ★ 金屬有機骨架材料
★ 類沸石咪唑骨架材料
★ 過氧化氫酶
★ 酵素固定化
★ 機械力化學法
關鍵字(英) ★ Metal-organic frameworks
★ Zeolitic imidazolate frameworks
★ Catalase
★ Enzyme immobilization
★ Mechanochemistry
論文目次 目錄
中文摘要 i
Abstract iii
目錄 v
圖目錄 x
表目錄 xiii
第1章 緒論 - 1 -
1.1  金屬有機骨架材料 (Metal-organic Frameworks, MOFs) - 1 -
1.1.1 發展演進 - 1 -
1.1.2 定義與特點 - 2 -
1.1.3 類沸石咪唑骨架材料 (Zeolitic imidazolate frameworks, ZIFs) - 3 -
1.1.4 類沸石咪唑骨架材料-8 (Zeolitic imidazolate frameworks-8, ZIF-8) - 5 -
1.2  機械力化學合成法 (Mechanochemistry) - 6 -
1.3  過氧化氫酶 (Catalase) - 8 -
1.4  酵素固定化 - 10 -
1.5  研究動機與目的 - 12 -
第2章 實驗 - 13 -
2.1  實驗藥品 - 13 -
2.2  實驗儀器 - 14 -
2.3  實驗儀器與方法之原理 - 16 -
2.3.1 中量快速球磨粉碎機 (Ball Mill Instrument) - 16 -
2.3.2 X射線粉磨繞射儀 (Powder X-ray Diffraction;PXRD) - 17 -
2.3.3 場發掃描式電子顯微鏡 (Field-emission Scanning Electron Microscope;FE-SEM) - 18 -
2.3.4 紫外可見光光譜儀 (Ultraviolet/Visible Spectrophotometer;UV/Vis) - 19 -
2.3.5 等溫氮氣吸/脫附測量儀 (Nitrogen ad/desorption isothermal measurement) - 20 -
2.3.6 十二烷基硫酸鈉聚丙烯醯胺膠體電泳 (SDS-PAGE) - 22 -
2.3.7 偵測蛋白質的濃度 (Bradford assay) - 26 -
2.3.8 偵測過氧化氫水溶液之濃度 (Ferrous Oxidation in Xylenol orange assay, FOX assay) - 28 -
2.4  實驗步驟 - 29 -
2.4.1 以鐵氟龍研磨罐球磨ZIF-8材料 - 29 -
2.4.2 以氧化鋯研磨罐球磨ZIF-8材料 - 31 -
2.4.3 以氧化鋯研磨罐球磨CAT@ZIF-8 - 33 -
2.4.4 球磨CAT@ZIF-8之包覆率測定 - 33 -
2.4.5 球磨CAT@ZIF-8之活性測定 - 34 -
2.4.6 球磨CAT@ZIF-8在蛋白酶K環境中的活性測定 - 34 -
2.4.7 以吸附方式合成CAT on ZIF-8 - 34 -
2.4.8 CAT on ZIF-8之活性測定 - 35 -
2.4.9 CAT on ZIF-8在蛋白酶K環境中的活性測定 - 35 -
2.4.10 以原位創新合成法(de novo)合成CAT@ZIF-8 - 35 -
2.4.11 以原位創新合成法(de novo)合成CAT@ZIF-8之活性測定 - 36 -
2.4.12 SDS-PAGE膠體電泳分析 - 36 -
第3章 結果與討論 - 37 -
3.1  以鐵氟龍研磨罐球磨ZIF-8材料之鑑定 - 37 -
3.1.1 X光粉末繞射儀圖譜分析 (改變Zn/HmIm比例) - 37 -
3.1.2 X光粉末繞射儀圖譜分析 (改變η值) - 38 -
3.1.3 X光粉末繞射儀圖譜分析 (改變合成溶劑) - 39 -
3.1.4 X光粉末繞射儀圖譜分析 (改變研磨頻率) - 40 -
3.1.5 X光粉末繞射儀圖譜分析 (改變研磨時間) - 41 -
3.1.6 掃描式電子顯微鏡影像分析 (改變Zn/HmIm比例) - 42 -
3.1.7 掃描式電子顯微鏡影像分析 (改變η值) - 43 -
3.1.8 掃描式電子顯微鏡影像分析 (改變合成溶劑) - 44 -
3.1.9 掃描式電子顯微鏡影像分析 (改變研磨頻率) - 45 -
3.1.10 掃描式電子顯微鏡影像分析 (改變研磨時間) - 46 -
3.2  以氧化鋯研磨罐球磨ZIF-8材料之鑑定 - 47 -
3.2.1 X光粉末繞射儀圖譜分析 (改變Zn/HmIm比例) - 47 -
3.2.2 X光粉末繞射儀圖譜分析 (改變η值) - 48 -
3.2.3 X光粉末繞射儀圖譜分析 (改變合成溶劑) - 49 -
3.2.4 X光粉末繞射儀圖譜分析 (改變研磨頻率) - 50 -
3.2.5 X光粉末繞射儀圖譜分析 (改變研磨時間) - 51 -
3.2.6 掃描式電子顯微鏡影像分析 (改變Zn/HmIm比例) - 52 -
3.2.7 掃描式電子顯微鏡影像分析 (改變η值) - 53 -
3.2.8 掃描式電子顯微鏡影像分析 (改變合成溶劑) - 54 -
3.2.9 掃描式電子顯微鏡影像分析 (改變研磨頻率) - 55 -
3.2.10 掃描式電子顯微鏡影像分析 (改變研磨時間) - 56 -
3.3 以氧化鋯研磨罐球磨CAT @/on ZIF-8複合材料之鑑定 - 57 -
3.3.1 X光粉末繞射儀圖譜分析 - 57 -
3.3.2 掃描式電子顯微鏡影像分析 - 57 -
3.3.3 等溫氮氣吸/脫附儀測定比表面積之分析 - 58 -
3.3.4 SDS-PAGE膠體電泳分析 - 58 -
3.3.5 CAT@ZIF-8之活性測定- - 59 -
3.3.6 CAT on ZIF-8之活性測定 - 60 -
3.3.7 CAT @/on ZIF-8在蛋白質水解酶K環境下之活性測定 - 61 -
3.4 以原位創新法合成CAT@ZIF-8複合材料之鑑定 - 62 -
3.4.1 X光粉末繞射儀圖譜分析 - 62 -
3.4.2 掃描式電子顯微鏡影像分析 - 62 -
3.4.3 過氧化氫酶活性測定 - 63 -
3.4.4 2-甲基咪唑溶液之鹼性測試 - 63 -
第4章 結論與未來展望 - 64 -
參考文獻 1. Hoskins, B. F., & Robson, R. Design and construction of a new class of scaffolding-like materials comprising infinite polymeric frameworks of 3D-linked molecular rods. A reappraisal of the zinc cyanide and cadmium cyanide structures and the synthesis and structure of the diamond-related frameworks [N(CH3)4][CuIZnII(CN)4] and CuI[4,4′,4′′,4′′′-tetracyanotetraphenylmethane]BF4.xC6H5NO2. J. Am. Chem. Soc., 1990, 112, 1546-1554.
2. Tomic, E. A. Thermal stability of coordination polymers. J. Appl. Polym. Sci., 1965, 9, 3745-3752.
3. Gliemann, H., & Wöll, C. Epitaxially grown metal-organic frameworks. Mater. Today, 2012, 15, 110-116.
4. Yaghi, O. M., Li, G., & Li, H. Selective binding and removal of guests in a microporous metal–organic framework. Nature, 1995, 378, 703-706.
5. Li, H., Eddaoudi, M., O′Keeffe, M., et al. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature, 1999, 402, 276-279.
6. The Cambridge Crystallographic Data Centre.
https://www.ccdc.cam.ac.uk/support-and-resources/support/case/?caseid=9833bd2c-27f9-4ff7-8186-71a9b415f012.
7. Matsuda, R., Kitaura, R., Kitagawa, S., et al. Highly controlled acetylene accommodation in a metal–organic microporous material. Nature, 2005, 436, 238-241.
8. Li, J.-R., Sculley, J., & Zhou, H.-C. Metal–Organic Frameworks for Separations. Chem. Rev., 2012, 112, 869-932.
9. Chughtai, A. H., Ahmad, N., Younus, H. A., et al. Metal–organic frameworks: versatile heterogeneous catalysts for efficient catalytic organic transformations. Chem. Soc. Rev., 2015, 44, 6804-6849.
10. Kreno, L. E., Leong, K., Farha, O. K., et al. Metal–Organic Framework Materials as Chemical Sensors. Chem. Rev., 2012, 112, 1105-1125.
11. Horcajada, P., Chalati, T., Serre, C., et al. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2009, 9, 172.
12. Sheberla, D., Bachman, J. C., Elias, J. S., et al. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater., 2016, 16, 220.
13. Everett, D. H. (1972). Manual of Symbols and Terminology for Physicochemical Quantities and Units, Appendix II: Definitions, Terminology and Symbols in Colloid and Surface Chemistry. In Pure and Applied Chemistry (Vol. 31, pp. 577).
14. Falcaro, P., Ricco, R., Doherty, C. M., et al. MOF positioning technology and device fabrication. Chem. Soc. Rev., 2014, 43, 5513-5560.
15. Stock, N., & Biswas, S. Synthesis of Metal-Organic Frameworks (MOFs): Routes to Various MOF Topologies, Morphologies, and Composites. Chem. Rev., 2012, 112, 933-969.
16. Tranchemontagne, D. J., Hunt, J. R., & Yaghi, O. M. Room temperature synthesis of metal-organic frameworks: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0. Tetrahedron, 2008, 8553-8557.
17. Rabenau, A. The Role of Hydrothermal Synthesis in Preparative Chemistry. Angew. Chem. Int. Ed. Engl., 1985, 24, 1026-1040.
18. Klinowski, J., Almeida Paz, F. A., Silva, P., et al. Microwave-Assisted Synthesis of Metal–Organic Frameworks. Dalton Trans., 2011, 40, 321-330.
19. Ameloot, R., Stappers, L., Fransaer, J., et al. Patterned Growth of Metal-Organic Framework Coatings by Electrochemical Synthesis. Chem. Mat., 2009, 21, 2580-2582.
20. Pichon, A., Lazuen-Garay, A., & James, S. L. Solvent-free synthesis of a microporous metal–organic framework. CrystEngComm, 2006, 8, 211-214.
21. Qiu, L.-G., Li, Z.-Q., Wu, Y., et al. Facile synthesis of nanocrystals of a microporous metal–organic framework by an ultrasonic method and selective sensing of organoamines. Chem. Commun., 2008, 3642-3644.
22. Phan, A., Doonan, C. J., Uribe-Romo, F. J., et al. Synthesis, Structure, and Carbon Dioxide Capture Properties of Zeolitic Imidazolate Frameworks. Acc. Chem. Res., 2010, 43, 58-67.
23. Huang, X.-C., Lin, Y.-Y., Zhang, J.-P., et al. Ligand-Directed Strategy for Zeolite-Type Metal–Organic Frameworks: Zinc(II) Imidazolates with Unusual Zeolitic Topologies. Angew. Chem. Int. Ed., 2006, 45, 1557-1559.
24. Park, K. S., Ni, Z., Côté, A. P., et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci., 2006, 103, 10186.
25. Banerjee, R., Phan, A., Wang, B., et al. High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 2008, 319, 939.
26. James, S. L., Adams, C. J., Bolm, C., et al. Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev., 2012, 41, 413-447.
27. Introducing mechanochemistry.
https://www.chemistryworld.com/features/introducing-mechanochemistry/3009223.article.
28. Hu, Z., Peng, Y., Kang, Z., et al. A Modulated Hydrothermal (MHT) Approach for the Facile Synthesis of UiO-66-Type MOFs. Inorg. Chem., 2015, 54, 4862-4868.
29. Schaate, A., Roy, P., Godt, A., et al. Modulated Synthesis of Zr-Based Metal–Organic Frameworks: From Nano to Single Crystals. Chem.--Eur. J., 2011, 17, 6643-6651.
30. Dahl, J. A., Maddux, B. L. S., & Hutchison, J. E. Toward Greener Nanosynthesis. Chem. Rev., 2007, 107, 2228-2269.
31. Halliwell, B., & Gutteridge, J. M. The definition and measurement of antioxidants in biological systems. Free Radic Biol Med, 1995, 18, 125-126.
32. Valko, M., Leibfritz, D., Moncol, J., et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol., 2007, 39, 44-84.
33. Blokhina, O., Virolainen, E., & Fagerstedt, K. V. Antioxidants, Oxidative Damage and Oxygen Deprivation Stress: a Review. Ann. Bot., 2003, 91, 179-194.
34. MatÉs, J. M., Pérez-Gómez, C., & De Castro, I. N. Antioxidant enzymes and human diseases. Clin. Biochem., 1999, 32, 595-603.
35. Deisseroth, A., & Dounce, A. L. Catalase: Physical and chemical properties, mechanism of catalysis, and physiological role. Physiol. Rev, 1970, 50, 319-375.
36. Fita, I., & Rossmann, M. G. The NADPH binding site on beef liver catalase. Proc. Natl. Acad. Sci., 1985, 82, 1604.
37. Chance, B. EFFECT OF pH UPON THE REACTION KINETICS OF THE ENZYME-SUBSTRATE COMPOUNDS OF CATALASE. J. Biol. Chem., 1952, 194, 471-481.
38. Catalase.
https://en.wikipedia.org/wiki/Catalase.
39. Gomes-Ruffi, C. R., Cunha, R. H. d., Almeida, E. L., et al. Effect of the emulsifier sodium stearoyl lactylate and of the enzyme maltogenic amylase on the quality of pan bread during storage. LWT, 2012, 49, 96-101.
40. Hakala, T. K., Liitiä, T., & Suurnäkki, A. Enzyme-aided alkaline extraction of oligosaccharides and polymeric xylan from hardwood kraft pulp. Carbohydr. Polym., 2013, 93, 102-108.
41. Subba Rao, C., Sathish, T., Ravichandra, P., et al. Characterization of thermo- and detergent stable serine protease from isolated Bacillus circulans and evaluation of eco-friendly applications. Process Biochem., 2009, 44, 262-268.
42. Tong, Z., Qingxiang, Z., Hui, H., et al. Removal of toxic phenol and 4-chlorophenol from waste water by horseradish peroxidase. Chemosphere, 1997, 34, 893-903.
43. Luo, K., Yang, Q., Yu, J., et al. Combined effect of sodium dodecyl sulfate and enzyme on waste activated sludge hydrolysis and acidification. Bioresour. Technol., 2011, 102, 7103-7110.
44. Tonini, D., & Astrup, T. Life-cycle assessment of a waste refinery process for enzymatic treatment of municipal solid waste. Waste Manage., 2012, 32, 165-176.
45. Sassolas, A., Blum, L. J., & Leca-Bouvier, B. D. Immobilization strategies to develop enzymatic biosensors. Biotechnol. Adv., 2012, 30, 489-511.
46. Homaei, A. A., Sariri, R., Vianello, F., et al. Enzyme immobilization: an update. J Chem Biol, 2013, 6, 185-205.
47. Brodelius, P. (1978, 1978//). Industrial applications of immobilized biocatalysts. Paper presented at the Advances in Biochemical Engineering, Volume 10, Berlin, Heidelberg.
48. Datta, S., Christena, L. R., & Rajaram, Y. R. S. Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 2013, 3, 1-9.
49. Enzyme Immobilization.
https://www.easybiologyclass.com/.
50. Brady, D., & Jordaan, J. Advances in enzyme immobilisation. Biotechnol. Lett., 2009, 31, 1639.
51. Wong, L. S., Thirlway, J., & Micklefield, J. Direct Site-Selective Covalent Protein Immobilization Catalyzed by a Phosphopantetheinyl Transferase. J. Am. Chem. Soc., 2008, 130, 12456-12464.
52. Hsieh, H.-J., Liu, P.-C., & Liao, W.-J. Immobilization of invertase via carbohydrate moiety on chitosan to enhance its thermal stability. Biotechnol. Lett., 2000, 22, 1459-1464.
53. Ispas, C., Sokolov, I., & Andreescu, S. Enzyme-functionalized mesoporous silica for bioanalytical applications. Anal. Bioanal. Chem., 2009, 393, 543-554.
54. Bernfeld, P., & Wan, J. Antigens and Enzymes Made Insoluble by Entrapping Them into Lattices of Synthetic Polymers. Science, 1963, 142, 678.
55. Shen, Q., Yang, R., Hua, X., et al. Gelatin-templated biomimetic calcification for β-galactosidase immobilization. Process Biochem., 2011, 46, 1565-1571.
56. Wang, Z.-G., Wan, L.-S., Liu, Z.-M., et al. Enzyme immobilization on electrospun polymer nanofibers: An overview. J. Mol. Catal. B: Enzym., 2009, 56, 189-195.
57. Wen, H., Nallathambi, V., Chakraborty, D., et al. Carbon fiber microelectrodes modified with carbon nanotubes as a new support for immobilization of glucose oxidase. Microchim. Acta, 2011, 175, 283-289.
58. Kim, J., Jia, H., & Wang, P. Challenges in biocatalysis for enzyme-based biofuel cells. Biotechnol. Adv., 2006, 24, 296-308.
59. Liang, W., Xu, H., Carraro, F., et al. Enhanced Activity of Enzymes Encapsulated in Hydrophilic Metal–Organic Frameworks. J. Am. Chem. Soc., 2019, 141, 2348-2355.
60. Bragg William, H., & Bragg William, L. The reflection of X-rays by crystals. Proc. Royal Soc. Lond., 1913, 88, 428-438.
61. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Beer–Lambert law (or Beer–Lambert–Bouguer law).
https://goldbook.iupac.org/html/B/B00626.html.
62. Sing, K. S. W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl. Chem., 1985, 57, 603-619.
63. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72, 248-254.
64. Jiang, Z.-Y., Woollard, A. C. S., & Wolff, S. P. Hydrogen peroxide production during experimental protein glycation. FEBS Lett., 1990, 268, 69-71.
65. Ou, P., & Wolff, S. P. A discontinuous method for catalase determination at ‘near physiological’ concentrations of H2O2 and its application to the study of H2O2 fluxes within cells. J. Biochem. Biophys. Methods, 1996, 31, 59-67.
66. Nelson, D. P., & Kiesow, L. A. Enthalpy of decomposition of hydrogen peroxide by catalase at 25° C (with molar extinction coefficients of H2O2 solutions in the UV). Anal. Biochem., 1972, 49, 474-478.
指導教授 謝發坤(Fa-Kuen Shieh) 審核日期 2019-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明