博碩士論文 106223035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.148.145.130
姓名 羅子杰(Tzu-Chieh Lo)  查詢紙本館藏   畢業系所 化學學系
論文名稱 具咪唑鹽之離子交換膜之開發與製備
相關論文
★ Cycloiptycene分子之合成與自組裝行為之研究★ 含二噻吩蒽[3,2-b:2′,3′-d]噻吩單元之敏化染料太陽能電池
★ 以有機磷酸修飾電極表面功函數及對有機發光元件效率影響研究★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 具交聯結構之磺酸化聚馬來醯亞胺高分子質子傳導膜之開發與製備★ 有機薄膜電晶體材料苯三併環噻吩及苯四併環噻吩衍生物之開發
★ 有機薄膜電晶體高分子材料併環噻吩系列之開發★ 有機薄膜電晶體材料及可溶性有機薄膜電晶體材料衍生物之開發
★ 有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發★ 具交聯結構之苯乙烯-馬來醯亞胺 接枝型高分子質子傳導膜之開發與製備
★ 有機薄膜電晶體材料苯三併環噻吩及可溶性聯噻吩衍生物之開發★ 可溶性有機薄膜電晶體材料三併環及四併環噻吩衍生物之開發
★ 含benzotriazole 之D-π-A 共軛形光敏染料及其染料太陽能電池★ 有機薄膜電晶材料苯併環噻吩和可溶性硫醚噻吩衍生物之開發
★ 具咪唑鹽團聯高分子之陰離子傳導膜的開發與製備★ 可溶性有機薄膜電晶體材料三併環 及四併環噻吩衍生物之開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文以開發含有親水端之聚合新單體,用以製備三系列具親水端之離子高分子。
第一系列為中溫燃料電池離子交換膜 PNBC 的開發。首先製備出親水端單體 NB-CIm-4 單體與疏水端單體 NB-Hex,然後將兩者以不同比例進行 ROMP 聚合,製備出 PNBC,之後將此高分子浸泡於磷酸溶液內,得到磷酸化的 PNBC 高分子,模材製備優化中。
第二系列為鹼性燃料電池離子交換膜 PSCN 的開發。首先製備疏水端單體 VB-O8 及交聯試劑 DVB-O5,之後利用 RAFT 進行聚合,先聚疏水端單體 VB-O8 及交聯試劑 DVB-O5,再加入4-氯甲基苯乙烯共聚,合成高分子主幹後,最後再加入N-甲基咪唑進行高分子的離子化反應。之後將此高分子浸泡於 KOH 溶液內,得到鹼化的 PS 高分子。為改善薄膜的柔軟度,我們更近一步製備出具長碳鏈之疏水端單體 styrene,並進行此一共聚之優化。目前 PS-C5-NIm-50 在室溫下薄膜導電度最高可達 0.022 S/cm。
第三系列為鹼性燃料電池離子交換膜 PNBCN 的開發。首先以新戊基作為離子基團之橋梁,開發出新的親水端單體 BIm 單體,未來能再以 ROMP 進行其聚合,製備出 PNBCN,可將此高分子浸泡於 KOH 溶液內,得到鹼化的 PNBCN 高分子,此一新開發之高分子具較高的離子基團,預期能有較高之 OH- 導電度。
第四系列為中溫燃料電池離子交換膜 PBImNB 的開發。將第三系列的新 NB-BIm 單體 (10%) 與 BIm (40%)及具雙溴之烷基 (50%) 共聚,製備出一新的高分子 PBImNB,因高分子具備 NB 單元,此新型高分子可藉由 AIBN 或 ROMP 進行二次的交聯聚合。成膜後可將此高分子浸泡於 KOH 溶液內,先得鹼化的 PBImNB 高分子,然後將其與磷酸進行反應,可得磷酸化之 PBImNB 高分子,可為中溫燃料電池離子交換膜之模材,成膜製程優化中。
摘要(英) In this study, three series of hydrophilic monomers for preparation of ionic polymer for ion exchange membranes were developed.
In the first series, PNBC for medium temperature fuel cell exchange membrane was developed. First, new monomer NB-CIm-4 and NB-Hex were synthesized, and then the polymer PNBC was prepared via ring-opening metathesis polymerization (ROMP) with different ratio of these two monomers. The phosphoric acid-doped polymer PNBC was prepared by immersing the polymeric film into phosphoric acid solution. The membrane preparation of this new ionic polymer is under optimization.
In the second series, ionic polymer PSCN for alkaline fuel cell exchange membrane was developed. First, monomer VB-O8 and cross-linker DVB-O5 were synthesized and then the polymerization was carried out by reversible addition-fragmentation transfer polymerization (RAFT). The hydrophobic VB-O8 and cross-linker DVB-O5 were first polymerized, and then 4-vinylbenzyl chloride was introduced for co-polymerization. The new PS backbone was then imidazolized by methylimidazole to give the final ionic polymer. Then, alkalized PSCN polymer was obtained by immersing the polymeric film into KOH solution. To further improve the film softness, the hydrophobic styrene monomer with a longer branched alkyl chain (b-C8H17). Presently, PSCN-50 film exhibits conductivity up to 0.022 S/cm at room temperature.
In the third series, PNBCN for alkaline fuel cell exchange membrane was developed. First, new monomer BIm was synthesized by using neopentyl group as bridge between two imidazole units. Next, the new polymer NB-BIm was developed. Via ring-opening metathesis polymerization (ROMP) with different ratio of these three NB monomers, the new polymer PNBCN was developed. The alkalized PNBCN can be obtained by immersing the obtained polymeric film into KOH solution. The membrane preparation of this new polymer is under optimization.
In the fourth series, PBImNB for medium temperature fuel cell exchange membrane was developed. First, the previous series monomer NBIm (10%), BIm(40%) and dibromoalkane (50%) were first polymerized to give the new ionic polymer PBImNB. With the 10% NB unit, the new ionic polymer could be carried out second polymerization by ROMP or RAFT polymerization. The alkalized PBImNB ionic film was obtained by immersing the film into KOH solution. The phosphoric acid doped PBImNB film was obtained by immersing the obtained film into H3PO4 solution. The PBImNB membrane preparation for medium temperature fuel cell exchange membrane is under optimization.
關鍵字(中) ★ 高分子 關鍵字(英) ★ polymer
論文目次 中華民國一零八年七月

目錄
中文摘要 i
Abstract iii
謝誌 v
重要名詞縮寫對照表 xii
第一章 緒論 1
1-1 前言 2
1-2 燃料電池簡介 4
1-3 燃料電池種類 9
1-3-1 質子交換膜燃料電池 (PEMFCs) 10
1-3-2 磷酸燃料電池 (PAFCs) 12
1-3-3 固態氧化物燃料電池 (SOFCs) 13
1-3-4 熔融碳酸鹽燃料電池 (MCFCs) 15
1-3-5 鹼性燃料電池 (AFCs) 16
1-3-6 固態鹼性燃料電池 (SAFCs) 17
第二章 文獻回顧 22
2-1 陰離子交換膜簡介 23
2-2 陰離子交換膜種類 24
2-3 陰離子交換基團的穩定性 40
2-4 陽離子交換膜簡介 47
2-5 陽離子交換膜種類 48
2-6 陽離子交換基團的穩定性 61
2-7 開環移位聚合反應 64
2-8 可逆加成鏈轉移自由基聚合反應 65
2-9 研究動機 69
第三章 實驗與原理 74
3-1 實驗藥品 75
3-1-1 實驗所使用之化學藥品 75
3-1-2 藥品的純化 77
3-1-3 實驗所使用之溶劑 78
3-1-4 溶劑除水 78
3-2 實驗儀器及技術原理 79
3-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance);Bruker AVANCE 300 / 500MHz 79
3-2-2 熱重分析儀 (Thermal Gravimetric Analysis, TGA); Mettler Toledo TGA/SDTA 851 80
3-2-3 交流阻抗儀 (Alternating Current Impedance);Autolab Pgstat 30 AUT system 80
3-2-4 吸水膨潤比 (Water Uptake) 與尺寸變化率 (Swelling Ratio) 82
3-2-5 磷酸摻雜比 (Phosphoric Acid Doping Level) 83
3-2-6 離子交換容量 (Ion Exchange Capacity, IEC) 83
3-2-7 化學穩定性 (Chemical stability) 85
3-3 高分子合成後處理 85
3-3-1 高分子薄膜的製備 85
3-3-2 高分子薄膜的鹼化 85
3-3-3 高分子薄膜的酸化 86
3-4 合成步驟 86
3-4-1 6-bromo-1-hexene (1) 的合成 86
3-4-2 NB-Br-4 (2) 的合成 87
3-4-3 NB-Cim-4 (3) 的合成 88
3-4-4 DiTsO-C5 (4) 的合成 89
3-4-5 BIm-C5 (5) 的合成 90
3-4-6 NB-CIm-C5-NIm (6) 的合成 91
3-4-7 NB-Hex (7) 的合成 92
3-4-8 R-PNB-CIm-40 (8) 的合成 93
3-4-9 VB-O8 (9) 的合成 94
3-4-10 DVB-O5 (10) 的合成 95
3-4-11 Chain Transfer Agent, CTA (11) 的合成 96
3-4-12 PS-C5-NIm-50 (12) 的合成 97
第四章 結果與討論 99
4-1 Poly(NB-Hex)-co-poly(NB-CIm-4) 系列之合成及討論 100
4-1-1 PNB-CIm-4 的 1H 核磁共振光譜結構探討 101
4-1-2熱穩定性 (Thermal Stability) 103
4-1-3 離子導電度 (Ion Conductivity) 104
4-2 Poly(styrene-O8)-co-poly(styrene-NIm)-co-(DVB-O5) 之合成及討論 105
4-2-1 PS-C5-NIm 的 1H 核磁共振光譜結構探討 106
4-2-2 離子交換容量 (Ion Exchange Capacity, IEC) 108
4-2-3 吸水膨潤比 (W.U.) 與尺寸變化率 (S.R.) 109
4-2-4熱穩定性 (Thermal Stability) 110
4-2-5 離子導電度 (Ion Conductivity) 111
第五章 結論 112
參考文獻 115
附錄 122
參考文獻 (a) Grove, W. R. Phil. Mag. 1839, 15, 287.
(b) Grove, W. R. Phil. Mag. 1839, 14, 127.
(c) Grove, W. R. Phil. Mag. 1842, 21, 417.
Couture, G.; Alaaeddine, A.; Boschet, F.; Ameduri, B. Prog. Polym. Sci. 2011, 36, 1521.
圖片來源: 金華圖書-燃料電池.
圖片來源: 金華圖書-燃料電池.
(a) Huang, X.; Reifsnider, K. Mod. Aspect Electroc. 2010, 49, 1.
(b) Javaid, S. M. Z. Mater. Sci. Forum. 2010, 657, 88.
(c) Maiyalagan, T.; Pasupathi, S. Mater. Sci. Forum. 2010, 657, 143.
(d) Miller, M.; Bazylak, A. J. Power Sources 2011, 196, 601.
Ticianelli, E. A.; Derouin, C. R.; Redondo, A.; Srinivasan, S. J. Electrochem. Soc., 1988, 135, 9.
Ram Devanathan. Energy Environ. Sci., 2008, 1, 101–119.
Al-Saleh, M. A.; Gultekin, S.; Al-Zakri, A. S.; Celiker, H. J. Appl. Electrochem. 1994, 24, 575.
(a) Wang, Y.; Li, L.; Hu, L.; Zhuang, L.; Lu, J. T.; Xu, B. Q. Electrochem. Commun. 2003, 5, 662.
(b) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.
(c) Tripkovic, A. V.; Popovic, K. D.; Lovic, J. D.; Jovanovic, V. M.; Kowal, A. J. Electroanal. Chem. 2004, 572,119.
(d) Prabhuram, J.; Manoharan, R. J. Power Sources 1998, 74, 54.
(a) Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H. Chem. Commun. 2006, 1428.
(b) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. J. Power Sources, 2005, 150, 27.
(a) Varcoe, J. R.; Slade, R. C. T. Fuel Cells 2005, 5, 187.
(b) Tripkovic, A. V.; Popovic, K. D.; Grgur, B. N.; Blizanac, B.; Ross, P. N.; Markovic, N. M. Electrochim. Acta 2002, 47, 3707.
. Luea, S. J.; Wanga, W. T.; Mahesha, K. P. O.; Yang, C. C. J. Power Sources 2010, 195, 7991.
Amendola, S. C.; Onnerud, P.; Kelly, M. T.; Petillo, P. J.; Sharp-Goldman, S. L.; Binde,r M. J. Power Sources 1999, 84, 130.
(a) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem. Int. Ed. 2007, 46, 8024.
(b) Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa,H.; Tanaka, H.; Oguro, K. J. Electrochem. Soc. 2009, 156, B509.
(a) Surya Prakash, G. K.; Krause, F. C.; Viva, F. A.; Narayanan, S. R.; Olah, G. A. J. Power Sources, 2011, 196, 7967.
(b) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. R. J. Power Sources 2005, 150, 27.
(c) Asazawa, K.; Yamada, K.; Tanaka, H.; Oka, A.; Taniguchi, M.; Kobayashi, T. Angew. Chem., Int. Ed. 2007, 46, 8024.
(d) Asazawa, K.; Sakamoto, T.; Yamaguchi, S.; Yamada, K.; Fujikawa,H.; Tanaka, H.; Oguro, K. J. Electrochem. Soc. 2009, 156, B509.
(e) Matsuoka, K.; Iriyama, Y.; Abe, T.; Matsuoka, M.; Ogumi, Z. J. Power Sources 2005, 150, 27.
(f) Yu, E. H.; Scott, K.; J. Power Sources 2004, 137, 248.
Varcoe, J. R.; Slade, R. C. T.; Yee, E. L. H.; Poynton, S. D.; Driscoll, D. J.; Apperley, D. C. Chem. Mater. 2007, 19, 2686.
Hibbs, M. R.; Fujimoto, C. H.; Cornelius ,C. J. Macromolecules 2009, 42, 8316.
Wanga, G.; Wenga, Y.; Chu, D.; Xie, D.; Chen, R. J. Membr. Sci. 2009, 326, 4.
Zhao, Z.; Wang, J.; Li, S.; Zhang, S. J. Power Sources 2011, 196, 4445.
. Tanaka, M.; Fukasawa, K.; Nishino, E.; Yamaguchi, S.; Yamada, K.; Tanaka, H.; Bae, B.; Miyatake, K.; Watanabe, M. J. Am. Chem. Soc. 2011, 133, 10646.
Li, N.; Zhang, Q.; Wang, C.; Lee, Y. M.; Guiver, M. D. Macromolecules 2012, 45, 2411.
Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
Zhang, F.; Zhang, H.; Qu, C. J. Mater. Chem., 2011, 21, 12744.
Cao, Y.-C.; Wang, X.; Mamlouk, M.; Scott, K. J. Mater. Chem. 2011, 21, 12910.
Li, W.; Fang, J.; Lv, M.; Chen, C.; Chi, X.; Yang, Y.; Zhang, Y. J. Mater. Chem., 2011, 21, 11340.
Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
Clark, T. J.; Roberton, N. J.; Kostalik IV, H. A.; Lobkovsky, E. B.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2009, 131, 12888.
Roberton, N. J.; Kostalik IV, H. A.; Clark, T. J.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2010, 132, 3400.
Noonan, K. J. T.; Hugar, K. M.; Kostalik IV, H. A.; Lobkovsky, E. B.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2012, 134, 18161.
Michael R., H.; Cy H., F.; Christopher J., C. Macromolecules 2009, 42, 8316.
Wang, G.; Weng, Y.; Zhao, J.; Chen, R.; Xie, D. Journal of Applied Polymer Science 2009, 112, 721.
Zhang, F.; Zhang, H.; Qu, C. J. Mater. Chem. 2011, 21, 12744.
Manabu, T.; Keita, F.; Eriko, N.; Susumu, Y.; Koji, Y.; Hirohisa, T.; Byungchan, B.; Kenji, M.; Masahiro, W. J. Am. Chem. Soc. 2011, 133, 10646.
Li, C.; Wang, S.; Wang, W.; Wie, X.; Lu, Y.; Deng, C. International journal of Hydrogen Energy 2013, 38, 11038.
X. Li, Y. YU, Q. Liu, Y. Meng, International journal of Hydrogen Energy 2013, 38, 11038.
Clark, T. J.; Robertson, N. J.; Kostalik IV, H. A.; Lobkovsky, E. B.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2009, 131, 1288.
Robertson, N. J.; Kostalik IV, H. A.; Clark, T. J.; Mutolo, P. F.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2010, 132, 3400.
Noonan, K. J.; Hugar, K. M.; Kostalik, H. A.; Lobkovsky, E. B.; Abruna, H. D.; Coates, G. W. J. Am. Chem. Soc. 2012, 134, 18161.
Zhao, Y. Feng. L, Gao.J. Zhao, Y. Wang, S. Xie, X. International journal of Hydrogen Energy 2016, 41, 16264-16274
Zhu, L.; Yu, X.; Hickner, M. A. Journal of Power Source 2017, 375, 1-9.
Dong, X.; Lv, D.; Zheng, J.; Xue, B.; Bi, W.; Li, S.; Zhang, S. Journal of Membrane Science 2017, 535, 301-311.
Wang, J.; Li, S.; Zhang, S. Macromolecules 2010, 43, 3890.
Cope, A. C.; Mehta, A. S. J. Am. Chem. Soc. 1963, 85, 1949.
(a) Chempath, S.; Boncella. J. M.; Pratt, L.R.; Henson, N.; Pivovar, B.S. J. Phys. Chem. C 2010, 114, 11977.
(b) Chempath. S.; Einsla, B.R.; Pratt, L.R.; Macomber, C.S.; Boncella, J. M.; Rau, J.A.; Pivovar, B.S. J. Phys. Chem. C. 2008, 112, 3179.
Lin, B.; Dong, H.; Li, Y.; Si, Z.; Gu, F.; Yan, F. Chem. Mater. 2013, 25, 1858.
W. G. Grot, US Pat., 3718627, 1968.
K. A. Mauritz; R. B. Moore , Chem. Rev., 2004, 104 , 4535 -4586.
C. Stone, A. R. Steck and R. D. Lousenberg, US Pat., 5602185, 1997..
P. Zschocke; D. Quellmalz J. Membr. Sci. 1985, 22, 325-332.
Chalida, K.; Bradley, P. L.; Lu, G. Q. M.; Wang, L. Z. J. Membr. Sci. 1985, 22, 325-332.
Wang, F.; Michael, H.; Kim, Y. S.; Thomas, A. Z.; James, E. M. J. Membr. Sci. 2002, 197, 231-242.
Y. Woo.et al. J. Membr. Sci., 2003, 220, 31–45.
Li, L.; Zhang, J.; Wang, Y. X. J. Membr. Sci. 2003, 226, 159-167.
Xing, P. X.; Gilles, P. R.; Michael, D. G.; Serguei, D. M.; Wang, K.; Serge, K. J. Membr. Sci. 2004, 229, 95-106.
Yang, S.; Gong, C.; Guan, R.; Zou, H.; Dai, H. Polym. Adv. Technol. 2006, 17, 360–365.
Wang, K. L.; Yang, L.; Wei, W. X.; Zhang, L.; Chang, G. J. J. Membr. Sci. 2018, 549, 23-27..
Xavier, G.; Mustapha, E. H.; Deborah, J. J.; Jacques, R. Solid State Ionics, 1997, 97, 323-331.
Pietro. S.; Francesco, L.; Antonino, S. A.; Enza, P.; Vincenzo, A. J. Membr. Sci. 2001, 188, 71-78.
Yoshitsugu, S.; Per, E.; Daniel, S. J. Electrochem. Soc. 1996, 143, 1254-1259
Michael R., H.; Cy H., F.; Christopher J., C. Macromolecules 2009, 42, 8316.
A. Bozkurt; W. H. Meyer Solid State Ionics. 2001, 138, 259-265.
Li, L.; Zhang, J.; Wang, Y. X. J. Membr. Sci. 2003, 226, 159-167.
Li, L.; Wang, Y. X. J. Membr. Sci. 2005, 246, 167-172.
He, R. G.; Li, Q. F.; Anders, B.; Jensen, J. O.; Bjerrum, N. J. J. Membr. Sci. 2006, 277, 38-45.
Yang, S. F.; Gong, C. L.; Zou, H.; Dai, Hua. Polym. Adv. Technol. 2006, 17, 360-365.
Chen, S. W.; Yin, Y.; Hidetoshi, K.; Ken-Ichi, O. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2797-2811.
Jens, W.; Klaus-Dieter, K.; Joachim, M.; Arne, T. Adv. Mater. 2008, 20, 2595–2598.
Shen, C. H.; Jheng, L. C.; Hsu, S. L. C.; Wang, J. T. W. J. Mater. Chem. 2011, 21, 15660-15665.
Yang, J. S.; Li, Q. F.; Jenson, J. O.; Pan, C.; Lars N. C.; Niels J.. B.; He, R. H. J. Power Sources 2012, 205, 114-121.
Kazujiro, S.; Yusuke, L.; Manabu, T.; Hiroyoshi, K. J. Mater. Chem. 2012, 22, 23767-23772.
Li, Xin.; Chen, X. M.; B. C. Benicewicz J. Power Sources 2013, 243, 796-804.
Yang, J. S.; Li, Q. F.; Lars, N. C.; Jens, O. J.; Pan, C.; Niels, J. B.; He,R. H. Adv. Energy Mater. 2013, 3, 622-630.
Simone, A.; Davide, C. V.; Sonia, D. B.; Eliana, Q.; Pier, P. R.; Corrado, T.; Piercario, M. J. Mater. Chem. A 2014, 2, 663-671.
Dong, X.; Lv, D.; Zheng, J.; Xue, B.; Bi, W.; Li, S.; Zhang, S. J. Membr. Sci. 2017, 535, 301-311.
Yang, J. S.; Li, Q. F.; Lars, N. C.; Jens, O. J.; Pan, C.; Niels, J. B.; He,R. H. J. Membr. Sci. 2018, 549, 23-27.
Wang, L.; Liu, Z. R.; Liu, Y.; Wang, L. J. Membr. Sci. 2019, 583, 110-117.
Yang, J. S.; Li, Q. F.; Lars, N. C.; Jens, O. J.; Pan, C.; Niels, J. B.; He,R. H. J. Membr. Sci. 2018, 549, 23-27.
Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
Cheng, X.; Zhang, J.; Tang, Y.; Song, C.; Shen, J.; Song, D.; Zhang, J. J. Power Sources 2007, 167, 25-31.
Gittlemen, C. S.; Coms, F. D.; Lai, Y. H. Polymer electrolyte fuel cell degrad. 2011, 2, 15-88.
Gubler, L.; Scherer, G. G. Polymer electrolyte fuel cell durability 2009, 6, 133-155.
Inaba, M.; Kinumoto, T.; Kiriake, M.; Umebayashi, R.; Tasaka, A.; Ogumi, Z. Electrochim. Acta 2006, 51, 5746-5753.
Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells 2010, 6, 973-982.
Okada, T.; Xie, G.; Meeg, M. Electrochim. Acta 1998, 43, 2141-2155.
Borup, R. et al. Chem. Rev. 2007, 107, 3904-3951.
Guan, Y. S.; Pu, H. T.; Jin, M.; Chang, Z. H.; Wan, D. C. Fuel Cells 2010, 6, 973-982.
Chang, Z. H.; Pu, H. T.; Wan, D. C.; Liu, L.; Yuan, J. J.; Yang, Z. L. Polym. Degrad. Stab. 2009, 94, 1206-1212.
Chiefari, J.; Chong, Y. k.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R- T. A.; Meijs, G- F.; Moad, G.; Rizzardo, E.; Thang, S- H. Macromolecules 1998, 31, 5559.
Lee, H.; Lee, J. M.; Shin, S. E.; Lee, B.H.; Choe, S. Polymer 2005, 46, 3661.
Price, S. C.; Ren, X.; Jackson, A. C.; Ye, Y.; Elabd, Y. A.; Bayer, F. L. Macromolecules 2013, 46, 7332.
Wang, L.; Hickner, M. A. Polym. Chem. 2014, 5, 2928.
Qiu, B.; Lin, B.; Qiu, L.; Yan, F. J. Mater. Chem. 2012, 22, 1040.
Toyota Central Research & Development Lab Inc, Japanese Published Patent Application No.2001-019723
. Park, K. H.; Twieg, R. J.; Ravikiran, R.; Rhodes, L. F.; Shick, R. A.; Yankelevich, D.; Knoesne, A. Macromolecules 2004, 37, 5163.

指導教授 陳銘洲(Ming-Chou Chen) 審核日期 2019-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明