博碩士論文 106223002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.218.151.44
姓名 吳家和(Chia-Ho Wu)  查詢紙本館藏   畢業系所 化學學系
論文名稱 探討噻吩衍生物吸附及鹵素離子對金移動性的影響於單晶金電極
相關論文
★ 岐狀結構材料在鋰電池的應用★ Adsorption and Electrochemical Polymerization of Pyrrole on Au (100) Electrode as Examine by In Situ Scanning Tunneling Microscopy
★ Synthesis and Characterization of Cyclopentadithiophene (CDT) based Organic Photovoltaic and Pyrazine Contained Hole Transporting Small Molecules★ 有機碘化物在金、銠、鉑(111)電極和有機二硫醇化物在鉑(111)電極的吸附結構
★ STM研究銥(111)上碘、一氧化碳和一氧化氮的吸附及銅(100)上鎳和鉛的沈積★ 利用掃描式電子穿隧顯微鏡觀察鍍銅在鉑(111)及銠(111)電極表面
★ 使用in-situ STM和循環伏安儀研究銅和銀在碘修飾的鉑(100)電極之沈積過程★ 利用in-situ STM觀察銅(100)電極上鉛與鎳的沉積過程
★ 利用in-situ STM觀察硫酸根、氧及碘在釕(001)電極和醋酸、間苯三酚在銠(111)電極的吸附結構★ 掃描式電子穿隧顯微鏡及循環伏安法對 有機碘化物在鉑(111)電極上的研究
★ 半導體碘化鉛薄膜在單結晶銠電極上的研究★ 利用掃描式電子穿隧顯微鏡觀察汞薄膜在銥(111)電極上鹵素的吸附結構
★ 掃描式電子穿隧顯微鏡研究碘原子對汞在 銥(111)、鉑(111)及銠(111)上沈積的影響★ 掃描式電子穿隧顯微鏡對烷基及芳基硫醇分子在鉑(111)及金(111)上之研究
★ 掃描式電子穿隧顯微鏡研究一氧化碳、硫、硫醇分子及氯在釕(001)上的吸附結構★ 硫氧化物及聚賽吩衍生物 在金、鉑電極上之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 有機薄膜上分子的空間結構和排列位向會影響分子與載體之間的電荷傳導,進而影響到有機薄膜電晶體(OTFTs)的性能。因此我們利用掃描式電子穿隧顯微鏡探討併環噻吩衍生物在金(111)電極上的吸附結構。
首先,探討TTE (4,4-dicyclopenta[2,1-b:3,4-b]-dithiophene)修飾於金(111)電極上的吸附行為及結構。因為TTE分子本身的特性,意外的發現前手性分子的吸附行為,TTE吸附於電極表面後形成R(S)光學異構物。對於TTE而言,在0.25 V電位下,吸附層形成(7 X 14)整齊的鋸齒狀結構排列,其覆蓋度為0.061。經高解像結構增加對比度後發現,TTE分子具有特定方位的亮點可以分辨R(S) - TTE分子,也顯示分子形成RSR或SRS的排列順序,顯示分子間可能存在S…S的作用力。在- 0.15 V電位下,TTE分子吸附整齊的(2√3 X 3√3)結構於重排載體上,且TTE分子為單一光學異構物的吸附。經過電位調控確定其結構變化為可逆,推測電位對於相轉變的影響力大於載體結構。低覆蓋度的TTE修飾於金(111)上,顯示TTE以分子鍊的方式吸附於重排結構上,且從高解像圖判斷分子以硫端用edge-on的方式吸附於電極表面,代表TTE分子和載體之間靠著凡得瓦力吸引,以及分子間靠著π…π吸引力排列。
利用金(100)重排結構至(1 X 1)會擠出約20 %的金原子的特徵,調控至正電位增加表面粗糙度後在添加1 mM的鹵素離子探討對於金原子移動性的影響。發現氯、溴、碘離子在正電位下皆可以驅動金的移動性,推測正電位下鹵素離子與金原子形成錯合物提高金的移動能力,且金原子的移動方向遵循著載體方向。在原位的實驗觀察發現金錯合物除了表面的移動性外,還有部分的金錯合物溶解於電解液中。金(100)電極經過金原子劇烈移動後相較於佈滿(1 X 1)金島的狀態,表面粗糙度下降且變得更為平整,顯示鹵素離子對於金載體可做為平整劑。
摘要(英) The spatial structure and orientation of the molecules on the organic film affect the charge conduction between the molecule and the carrier.This in turn affects the performance of organic thin film transistors (OTFTs). Therefore, we used a scanning tunneling microscope (STM) to investigate the adsorption structure of a cyclothiophene derivative on a gold (111) electrode.
Firstly, the adsorption behavior and structure of TTE (4,4-dicyclopenta [2,1-b:3,4-b] -dithiophene) modified on Au(111) electrode were investigated. Because of the characteristics of the TTE molecule itself, the adsorption behavior of the prochiral molecule was unexpectedly discovered, and the TTE adsorbed on the surface of the electrode to form an R(S) optical isomer. For TTE, at a potential of 0.25 V, the adsorption layer formed a (7 X 14) zigzag structure with a coverage of 0.061. After increasing the contrast by high resolution, it is found that the bright spot of the TTE molecule with a specific orientation can distinguish the R(S)-TTE molecule, and also shows the order in which the molecules form the RSR or SRS, indicating that there may be a force of S...S between the molecules. At a potential of -0.15 V, the TTE molecule adsorbs a neat (2√3 X 3√3) structure on the reconstruction structure, and the TTE molecule is a single optical isomer. After the potential regulation is determined, the structural change is reversible, and the influence of the potential on the phase transition is estimated to be greater than the carrier structure. The low-coverage TTE is modified on Au(111), which shows that the TTE is adsorbed on the reconstruction structure, and the high-resolution image is judged to adsorb the molecule on the surface of the electrode with the sulfur end in an edge-on manner. The electrostatic attraction of S...Au between the TTE molecule and the carrier, and the attraction between the molecules by π...π attraction.
Using the Au(100) reconstruction structure to (1 X 1) will extrude about 20% of the gold atoms. After controlling the positive potential to increase the surface roughness, add 1 mM of halogen ions at the positive potential to investigate the gold atom. The impact of mobility. It is found that chloride, bromine and iodine ions can drive the mobility of gold at a positive potential. It is speculated that the halide ion forms a complex with the gold atom at a positive potential to improve the mobility of gold, and the moving direction of the gold atom follows the carrier direction. In situ experiments have revealed that in addition to the surface mobility of the gold complex, a portion of the gold complex is dissolved in the electrolyte. After the Au(100) electrode is vigorously moved by the gold atom, the surface roughness is reduced and becomes flatter than that of the (1 X 1) gold island. It is shown that the halogen ion can be used as a leveling agent for the gold carrier.
關鍵字(中) ★ 單晶電極
★ 自組裝
★ 噻吩衍生物
★ 金移動性
關鍵字(英) ★ Single crystal electrode
★ Self-assembly
★ Thiophene derivative
★ Gold mobility
論文目次 摘要.....................................................I
Abstract................................................II
誌謝...................................................III
目錄....................................................IV
圖目錄.................................................VII
第一章、緒論..............................................1
1-1 有機薄膜電晶體簡介....................................1
1-2 有機薄膜電晶體導論....................................1
1-3 有機薄膜電晶體元件結構.................................2
1-4 有機半導體的製程......................................2
1-5 有機半導體的傳導特性..................................3
1-6 相關文獻回顧..........................................4
1-7 研究動機..............................................5
第二章、實驗部分..........................................6
2-1 實驗用藥品............................................6
2-1-1 化學藥品............................................6
2-1-2 有機場效電晶體樣品..................................7
2-2 實驗用氣體...........................................10
2-3 金屬線材.............................................10
2-4 實驗用儀器...........................................11
2-4-1 循環伏安儀 (Cyclic Voltammetry, CV).............11
2-4-2 掃描式穿隧電子顯微鏡 (Scanning Tunneling Microscope,STM)...................................................11
2-4-3 研磨機 (Grinder Polisher)........................12
2-4-4 超音波震盪器 (Ultrasonic Vibrator)...............12
2-5 實驗步驟.............................................15
2-5-1 金(111)單晶電極製備................................15
2-5-2 分子膜的製備.......................................15
2-5-3 循環伏安法(CV)的前處理.............................15
2-5-4 STM探針製備........................................16
2-5-5 電化學掃描式穿隧電子顯微鏡(EC-STM)的前處理..........16
第三章、探討併環噻吩衍生物在單晶金上的吸附結構.............18
3-1 TTE分子吸附於金(111)電極.............................18
3-1-1 高濃度TTE修飾於金(111)之CV圖.......................18
3-1-2 TTE分子光學異構物之特性............................18
3-1-3 高濃度TTE分子修飾於在金(111)之STM圖.................22
3-1-4 電位對於TTE吸附層結構的影響.........................24
3-1-5 電位控制對於TTE分子結構的可逆性.....................32
3-1-6 探針篇壓差對TTE分子圖像的影響.......................37
3-1-7 低濃度TTE分子吸附於金(111)電極......................39
3-2 TTE分子吸附於金(100)電極.............................41
3-2-1 高濃度TTE修飾於金(100)電極之STM圖...................41
3-2-2 低濃度TTE修飾於金(100)電極之STM....................43
3-3 DDTT- SBT(H, T)- 14分子吸附於金(111)電極.............45
3-3-1 DDTT- SBT(H, T)- 14修飾於金(111)之CV圖.............45
3-3-2 DDTT- SBT(H, T)- 14修飾於金(111)之STM圖............47
3-4 DTBDTT分子吸附於金(111)電極..........................51
3-4-1 DTBDTT修飾於金(111)之CV圖..........................51
3-4-2 DTBDTT修飾於金(111)之STM圖.........................53
3-4-3 DTBDTT修飾於金(100)之STM圖.........................56
3-5 BDT分子吸附於金(111)電極.............................58
3-5-1 BDT修飾於金(111)之CV圖.............................58
3-5-2 BDT修飾於金(111)之STM圖............................60
第四章、鹵素離子對金原子在金(100)電極上移動性..............62
4-1 電位控制對載體結構的變化..............................62
4-1-1 金(100)電極之CV圖..................................62
4-1-2 金(100)電極之STM圖.................................62
4-2 氯離子對金移動性的影響................................66
4-2-1 含氯離子之金(100)電極CV圖..........................66
4-2-2含氯離子之金(100)電極STM圖..........................68
4-3 溴離子對於金移動性的影響............................73
4-3-1含溴離子之金(100)電極CV圖...........................73
4-3-2含溴離子之金(100)電極STM圖..........................75
4-4 碘離子對金移動性的影響................................77
4-4-1含碘離子之金(100)電極CV圖...........................77
4-4-2含碘離子之金(100)電極STM圖..........................79
4-5正電位下鹵素離子誘發的兩個機制.........................81
4-5-1 金島聚合...........................................81
4-5-2 金原子溶解.........................................83
第五章、結論.............................................85
第六章、附錄.............................................86
6-1 觀察五環素分子在金(100)上的吸附結構...................86
6-1-1 五環素分子吸附於金(100)之CV圖.......................86
6-1-2 五環素分子吸附於金(100)之STM圖......................86
6-1-3 電位對於五環素吸附層在金(100)電極上的影響............87
6-1-4 經過金原子移動性後的五環素分子膜的改變...............91
6-1-5 金(100)在空氣冷卻後修飾五環素.......................93
6-2 觀察黃嘌呤在金(111)上的吸附結構.......................95
6-2-1 高濃度黃嘌呤溶於超純水水溶液中修飾於金(111)之STM圖...95
6-2-2 低濃度黃嘌呤溶於超純水水溶液中修飾於金(111)之STM圖...95
6-2-3 高濃度黃嘌呤溶於pH 13氫氧化鈉中修飾於金(111)之STM圖..98
6-2-4 低濃度黃嘌呤溶於pH 13氫氧化鈉中修飾於金(111)之STM圖 .......................................................102
6-3 一氧化碳分子修飾於金(111)電極上......................105
第七章、參考文獻........................................107
參考文獻 1. I. C. Lewis and L. S. Singer, The Journal of Physical Chemistry, 1981, 85, 354-360.
2. A. Tsumura, H. Koezuka and T. Ando, Synthetic Metals, 1988, 25, 11-23.
3. J. G. Laquindanum, H. E. Katz and A. J. Lovinger, Journal of the American Chemical Society, 1998, 120, 664-672.
4. H. Ishii, K. Sugiyama, E. Ito and K. Seki, Advanced Materials, 1999, 11, 605-625.
5. C. D. Dimitrakopoulos and P. R. L. Malenfant, Advanced Materials, 2002, 14, 99-117.
6. C. B. France, P. G. Schroeder and B. A. Parkinson, Nano Letters, 2002, 2, 693-696.
7. P. G. Schroeder, C. B. France, B. A. Parkinson and R. Schlaf, Journal of Applied Physics, 2002, 91, 9095-9107.
8. L. Casalis, M. F. Danisman, B. Nickel, G. Bracco, T. Toccoli, S. Iannotta and G. Scoles, Physical Review Letters, 2003, 90, 206101.
9. Q. Chen, A. J. McDowall and N. V. Richardson, Langmuir, 2003, 19, 10164-10171.
10. C. B. France, P. G. Schroeder, J. C. Forsythe and B. A. Parkinson, Langmuir, 2003, 19, 1274-1281.
11. T. W. Kelley, P. F. Baude, C. Gerlach, D. E. Ender, D. Muyres, M. A. Haase, D. E. Vogel and S. D. Theiss, Chemistry of Materials, 2004, 16, 4413-4422.
12. Y. Inoue, Y. Sakamoto, T. Suzuki, M. Kobayashi, Y. Gao and S. Tokito, Japanese Journal of Applied Physics, 2005, 44, 3663-3668.
13. X. Zhang, A. P. Côté and A. J. Matzger, Journal of the American Chemical Society, 2005, 127, 10502-10503.
14. A. L. Briseno, R. J. Tseng, M.-M. Ling, E. H. L. Falcao, Y. Yang, F. Wudl and Z. Bao, Advanced Materials, 2006, 18, 2320-2324.
15. J. H. Kang and X. Y. Zhu, Chemistry of Materials, 2006, 18, 1318-1323.
16. J. Y. Lee, S. Roth and Y. W. Park, Applied Physics Letters, 2006, 88, 252106.
17. Y. M. Sun, Y. Q. Ma, Y. Q. Liu, Y. Y. Lin, Z. Y. Wang, Y. Wang, C. A. Di, K. Xiao, X. M. Chen, W. F. Qiu, B. Zhang, G. Yu, W. P. Hu and D. B. Zhu, Advanced Functional Materials, 2006, 16, 426-432.
18. R. Zeis, C. Besnard, T. Siegrist, C. Schlockermann, X. Chi and C. Kloc, Chemistry of Materials, 2006, 18, 244-248.
19. D. Käfer and G. Witte, Chemical Physics Letters, 2007, 442, 376-383.
20. Y. Li, Y. Wu, P. Liu, Z. Prostran, S. Gardner and B. S. Ong, Chemistry of Materials, 2007, 19, 418-423.
21. M. Shokouhimehr, Y. Piao, J. Kim, Y. Jang and T. Hyeon, Angewandte Chemie International Edition, 2007, 46, 7039-7043.
22. Y.-C. Yang, C.-H. Chang and Y.-L. Lee, Chemistry of Materials, 2007, 19, 6126-6130.
23. M.-C. Chen, C. Kim, S.-Y. Chen, Y.-J. Chiang, M.-C. Chung, A. Facchetti and T. J. Marks, Journal of Materials Chemistry, 2008, 18, 1029-1036.
24. D. B. Dougherty, W. Jin, W. G. Cullen, J. E. Reutt-Robey and S. W. Robey, The Journal of Physical Chemistry C, 2008, 112, 20334-20339.
25. H. L. Zhang, W. Chen, H. Huang, L. Chen and A. T. S. Wee, Journal of the American Chemical Society, 2008, 130, 2720-2721.
26. M. C. R. Delgado, K. R. Pigg, D. A. da Silva Filho, N. E. Gruhn, Y. Sakamoto, T. Suzuki, R. M. Osuna, J. Casado, V. Hernández, J. T. L. Navarrete, N. G. Martinelli, J. Cornil, R. S. Sánchez-Carrera, V. Coropceanu and J.-L. Brédas, Journal of the American Chemical Society, 2009, 131, 1502-1512.
27. S. Duhm, I. Salzmann, G. Heimel, M. Oehzelt, A. Haase, R. L. Johnson, J. P. Rabe and N. Koch, Applied Physics Letters, 2009, 94, 033304.
28. Y. Liu, Y. Wang, W. Wu, Y. Liu, H. Xi, L. Wang, W. Qiu, K. Lu, C. Du and G. Yu, Advanced Functional Materials, 2009, 19, 772-778.
29. C. Kim, J. R. Quinn, A. Facchetti and T. J. Marks, Advanced Materials, 2010, 22, 342-346.
30. S. L. Wong, H. Huang, Y. L. Huang, Y. Z. Wang, X. Y. Gao, T. Suzuki, W. Chen and A. T. S. Wee, The Journal of Physical Chemistry C, 2010, 114, 9356-9361.
31. B. W. Heinrich, C. Iacovita, T. Brumme, D.-J. Choi, L. Limot, M. V. Rastei, W. A. Hofer, J. Kortus and J.-P. Bucher, The Journal of Physical Chemistry Letters, 2010, 1, 1517-1523.
32. H. Glowatzki, G. Heimel, A. Vollmer, S. L. Wong, H. Huang, W. Chen, A. T. S. Wee, J. P. Rabe and N. Koch, The Journal of Physical Chemistry C, 2012, 116, 7726-7734.
33. J. Youn, S. Kewalramani, J. D. Emery, Y. Shi, S. Zhang, H.-C. Chang, Y.-j. Liang, C.-M. Yeh, C.-Y. Feng, H. Huang, C. Stern, L.-H. Chen, J.-C. Ho, M.-C. Chen, M. J. Bedzyk, A. Facchetti and T. J. Marks, Advanced Functional Materials, 2013, 23, 3850-3865.
34. W. Xu, R. E. A. Kelly, H. Gersen, E. Lægsgaard, I. Stensgaard, L. N. Kantorovich and F. Besenbacher, Small, 2009, 5, 1952-1956.
35. J. Repp, G. Meyer, S. M. Stojković, A. Gourdon and C. Joachim, Physical Review Letters, 2005, 94, 026803.
36. J. Noh, E. Ito, K. Nakajima, J. Kim, H. Lee and M. Hara, The Journal of Physical Chemistry B, 2002, 106, 7139-7141.
37. S. Ye, C. Ishibashi and K. Uosaki, Langmuir, 1999, 15, 807-812.
38. A. Cuesta and D. M. Kolb, Surface Science, 2000, 465, 310-316.
39. D. Croft and S. Devasia, Review of Scientific Instruments, 1999, 70, 4600-4605.
40. X. Gao, G. J. Edens, F.-C. Liu, M. J. Weaver and A. Hamelin, The Journal of Physical Chemistry, 1994, 98, 8086-8095.
指導教授 姚學麟(Shueh-Lin Yau) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明