博碩士論文 106223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:74 、訪客IP:3.14.141.177
姓名 王秉承(Bing-Cheng Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 醇溶性富勒烯衍生物的摻雜 對低溫製備TiO2電子萃取能力的影響
(Effect of Doping of Alcohol-Soluble Fullerene Derivatives on Electron Extraction of TiO2 at Low Temperature)
相關論文
★ 導電高分子應用於鋁質電解電容器之研究★ 異参茚并苯衍生物合成與性質之研究
★ 含雙吡啶或二氮雜啡衍生物配位 基之釕金屬錯合物的合成與其在 染料敏化太陽能電池之應用★ 新型噻吩環戊烷有機染料於染料敏化太陽能電池之應用
★ 應用於染料敏化太陽能電池之新型釕金屬錯合物的合成與性質探討★ 釕金屬光敏化劑的設計與合成及其在染料敏化太陽能電池之應用
★ 染敏電池用之非對稱釕錯合物之輔助配位基的設計與合成★ 含雙噻吩環戊烷之電變色高分子的研究
★ 含噻吩衍生物非對稱方酸染料應用於染料敏化 太陽能電池★ 高品質導電聚苯胺薄膜的合成及應用
★ 染料敏化太陽能電池用導電高分子聚苯胺及聚二氧乙基噻吩陰極催化劑的探討★ 具多功能性之非對稱型釕錯合物的設計與合成並應用於染料敏化太陽能電池
★ 含乙烯噻吩固著配位基之非對稱型釕金屬錯合物應用於染料敏化太陽能電池★ 染料敏化太陽能電池用二茂鐵系統電解質的探討
★ 合成含喹啉衍生物非對稱方酸染料應用於染料敏化太陽能電池★ 合成新穎輔助配位基於無硫氰酸釕金屬光敏劑在染料敏化太陽能電池上的應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 鈣鈦礦太陽能電池(Perovskite Solar Cell,簡稱PSC),光電轉換效率最高達24.2%(與矽晶圓太陽能電池的效率差不多)。以低溫方式所製備的TiO2(Lt-TiO2)膜作為一般式PSC的電子傳遞層(electron transporting layer,ETL),雖然有利於低成本製造及軟性基材應用,但Lt-TiO2膜有高缺陷密度及低電子萃取能力之缺點,導致所組裝的一般式PSC有嚴重的遲滯現象,影響其商品化行程。本研究透過使用具有高導電度及醇溶性的富勒烯衍生物,如:C60-RT2、C60-RT6、C70-RT2作為添加劑,製備含富勒烯衍生物的TiO2的奈米複合物膜(Cx-RTy:Lt-TiO2)作為一般式PSC的電子傳遞層,結果以C60-RT6:Lt-TiO2為ETL之元件有最佳的光電轉換效率,C60-RT6的添加能增加Lt-TiO2 ETL的電子萃取能力、導電度,減少缺陷,增加緻密度及親水性。並使沈積在ETL上的鈣鈦礦(Psk)膜有較大顆粒。由於C60-RT6材料中胺基(R-NH3+)上的氫會與鈣鈦礦結構中I產生氫鍵作用力,因此沉積於C60-RT6:Lt-TiO2膜上的Psk膜的結晶度比沈積於Lt-TiO2上的高。不管C60-RT6:Lt-TiO2膜(含2.25 wt% C60-RT6的C60-RT6:Lt-TiO2)是在100℃或室溫下乾燥30分鐘所製備的,尤其為ETL所組裝成PSC元件的光電轉換效率分別為17.99%(室溫乾燥)及17.51%(100℃加熱乾燥)均比其相同條件下製備的純Lt-TiO2膜為ETL的元件之光電轉換效率分別為14.47%及15.52%高,且元件的遲滯現象小,在手套箱中的長時間穩定性也較好。
摘要(英) Perovskite Solar Cell (PSC) has a power conversion efficiency of up to 24.2% (close to the efficiency of silicon wafer based solar cells). The TiO2 (Lt-TiO2) film prepared by low temperature method used as the electron transporting layer (ETL) in the regular PSC has the advantage of low-cost fabrication and flexible substrate applicable, nevertheless, it also has defect density. Furthermore Lt-TiO2 also has low electron extraction ability, resulting in a serious current hysteresis of the corresponding regular PSC. In this study, the fullerene derivatives (such as C60-RT2, C60-RT6, and C70-RT2) with alcohol solubility were prepared to be an additive for Lt-TiO2 electron transporting material (ETM). The additive all improve the photovoltaic performance of Lt-TiO2 ETL and amongst these three fullerene derivatives, C60-RT6 has the best performance. Comparing to Lt-TiO2 film, C60-RT6:Lt-TiO2 nanocomposite film has better electron extraction ability、higher conductivity、less defects and more hydrophilic no matter the ETL was heated at 100°C or dried at ambient atmosphere for 30 minutes. As a result perovskite (Psk) film deposited on the C60-RT6:Lt-TiO2 nanocomposite film has larger particles and better crystallinity than that deposited on Lt-TiO2 ETL. The power conversion efficiencies of the regular PSC besed on C60-RT6:Lt-TiO2 nanocomposite ETL increases to 17.99% (when the ETL was dried at room temperature) and 17.51% (ETL was heated at 100°C) respectively which are higher than those (14.47% and 15.52%, respectively) of the cells based on pure Lt-TiO2 ETL prepared under the same conditions. At the same time the current hysteresis is smaller and the long-term stability in the glove box is better for the cell based on C60-RT6:Lt-TiO2 nanocomposite ETL compared to those using Lt-TiO2 ETLs.
關鍵字(中) ★ 鈣鈦礦
★ 二氧化鈦
★ 富勒烯衍生物
關鍵字(英)
論文目次 摘要 I
Abstract VII
Graphical Abstract IX
謝誌 X
目錄 XI
圖目錄 XVI
表目錄 XXII
第一章、緒論 1
1-1、 前言 1
1-2、 鈣鈦礦太陽能電池(Perovskite solar cell, PSC) 4
1-2-1. 鈣鈦礦太陽能電池的架構 4
1-2-2. 一般式鈣鈦礦太陽能電池的工作原理 5
1-2-3. 鈣鈦礦太陽能電池的光電轉換效率 6
1-3、 鈣鈦礦太陽能電池之研究歷程 9
1-3-1. 第一個將鈣鈦礦材料應用於太陽能電池的研究 9
1-3-2. 固態電解質應用於鈣鈦礦太陽能電池 12
1-4、 鈣鈦礦活性層的製備方法 14
1-4-1. 以一步驟合成法製備鈣鈦礦活性層 15
1-4-2. 以兩步驟合成法製備鈣鈦礦活性層 16
1-4-3. 一步驟反溶劑處理法製備鈣鈦礦活性層 18
1-5、 TiO2作為鈣鈦礦太陽能電池中電子傳輸層的發展 20
1-5-1. 高溫鍛燒製備TiO2膜(Ht-TiO2) 20
1-5-2. 低溫方式製備的TiO2 膜(Lt-TiO2) 20
1-5-3. Li-TFSi應用於Ht-TiO2 22
1-5-4. C60衍生物應用於Lt-TiO2 23
1-5-5. C70應用於Lt-TiO2 31
1-5-6. 水溶性C60衍生物-應用於Ht-TiO2 34
1-6、 胺基上的氫會與鈣鈦礦中的碘產生氫鍵作用 39
1-7、 研究動機 42
第二章、實驗部分 43
2-1、 實驗藥品與儀器設備 43
2-1-1. 藥品 43
2-1-2. 儀器設備 44
2-2、 一般式鈣鈦礦太陽能電池組裝步驟 45
2-2-1. 藥品配製 45
2-2-2. 元件組裝步驟 48
2-3、 儀器分析及樣品製備 52
2-3-1. 太陽光模擬器及光電轉換效率量測 (Solar Simulator, KXL-500F) 52
2-3-2. 掃描式電子顯微鏡 (Scanning Electron Microscope, Hitachi S-800) 53
2-3-3. X-ray 繞射光譜儀 (X-Ray Diffractometer, BRUKER D8 Discover ) 54
2-3-4. 熱蒸鍍系統(Thermal evaporation system) 55
2-3-5. 太陽能電池外部量子效率量測系統 (Incident Photon to Current Conversion Efficiency (IPCE), PVCS-I) 55
2-3-6. 光激發螢光光譜儀(Photoluminescence Spectrometer) 56
2-3-7. XPS光電子能譜儀 (X-ray photoelectron spectroscopy) 57
2-3-8. UPS紫外光電子能譜儀(Ultraviolet photoelectron spectroscopy) 58
2-3-9. 接觸角量測儀(contact angle) 58
第三章、結果與討論 59
3-1、 最佳Cx-RTy:Lt-TiO2 ETM的篩選 59
3-1-1. Cx-RTy:Lt-TiO2及Lt-TiO2 ETM以100℃加熱30分鐘作為ETL的光伏表現 59
3-1-2. Cx-RTy:Lt-TiO2及Lt-TiO2 ETM以室溫乾燥30分鐘作為ETL的光伏表現 60
3-2、 以100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2為ETL所組裝之元件的IPCE量測 63
3-3、 以100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2為ETL所組裝之元件的電流遲滯現象 64
3-4、 2.25 wt% C60-RT6 : Lt-TiO2 ETL之XPS縱深分析 66
3-5、 C60-RT6:Lt-TiO2與Lt-TiO2膜的光學性質及前置軌域能階 68
3-5-1. UV-vis吸收光譜 68
3-5-2. C60-RT6:Lt-TiO2與Lt-TiO2層的前置軌域能階 70
3-6、 C60-RT6的添加對Lt-TiO2導電度影響 74
3-7、 加入C60-RT6於Lt-TiO2中對Lt-TiO2膜接觸角表面親疏水性的影響 76
3-8、 添加C60-RT6於Lt-TiO2對Lt-TiO2膜表面形貌的影響 77
3-9、 添加C60-RT6於Lt-TiO2對Lt-TiO2膜表面粗糙度的影響 79
3-10、 沈積在四個ETLs膜上的鈣鈦礦膜之SEM表面形貌 81
3-11、 沈積在100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2膜上的鈣鈦礦膜之光學性質 84
3-12、 沈積在100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2膜上的鈣鈦礦膜之結晶度 84
3-13、 沈積在100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2膜上的鈣鈦礦膜之PL及TRPL光譜圖 90
3-14、 以100-Lt-TiO2、R-Lt-TiO2、100-C60-RT6:Lt-TiO2及R-C60-RT6:Lt-TiO2為ETL之一般式鈣鈦礦太陽能電池之長時間穩定性 92
3-15、 優化以R-C60-RT6:Lt-TiO2為ETL所組裝之元件的光電轉換效率及在大氣下長時間穩定性 94
3-15-1. 降低R-C60-RT6:Lt-TiO2的膜厚 94
3-15-2. 以P3HT作為電洞傳輸層 95
第四章、結論 98
參考文獻 100
參考文獻 [1] https://www.digitimes.com.tw/tech/dt/n/shwnws.asp?cnlid=1&id=0000549462_HC15591658U13131URXX0
[2] http://en.wikipedia.org/wiki/Gustav_Rose (2017 年 8 月 11 日)
[3] Da-Xing Yuan, Adam Gorka, Mei-Feng Xu, Zhao-Kui Wang and Liang-Sheng Liao, “Inverted planar NH2CH=NH2PbI3 perovskite solar cells with 13.56% efficiency via low temperature processing“, Phys. Chem. Chem. Phys., 2015, 17, 19745-19750.
[4] Nam Joong Jeon, Hyejin Na, Eui Hyuk Jung, Tae-Youl Yang, Yong Guk Lee, Geunjin Kim, Hee-Won Shin, Sang Il Seok , Jaemin Lee and Jangwon Seo, “A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells”, Nature energy, 2018, 3, 682-689.
[5] Wu-Qiang Wu, Zhibin Yang, Peter N. Rudd, Yuchuan Shao, Xuezeng Dai, Haotong Wei, Jingjing Zhao, Yanjun Fang, Qi Wang, Ye Liu, Yehao Deng, Xun Xiao, Yuanxiang Feng, Jinsong Huang, “Bilateral alkylamine for suppressing charge recombination and improving stability in blade-coated perovskite solar cells”, Sci. Adv, 2019, 5, 8925-8934.
[6] Chien-Hung Chiang, Chun-Guey Wu “A methodto prepare highly oriented MAPbI3 crystallites for high efficiency perovskite solar cell to achieve 86% fill factor”, ACS Nano, 2018, 12, 10355-10364.
[7] Dong Shi, Valerio Adinolfi, Riccardo Comin, Mingjian Yuan, Erkki Alarousu, Andrei Buin, Yin Chen, Sjoerd Hoogland, Alexander Rothenberger, Khabiboulakh Katsiev, Yaroslav Losovyj, Xin Zhang, Peter A. Dowben, Omar F. Mohammed, Edward H. Sargent, Osman M. Bakr, ” Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals”, Science, 2015, 347, 519–522.
[8] Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H., “Dye-Sensitized Solar Cells”, Chem. Rev. 2010, 110, 6595-6663.
[9] Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T., “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 2009, 131, 6050-6051.
[10] Kim, H, S.; Lee, C, R.; Im, J, H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Baker, R. H.; Yum, J. H.; Moser, J. E.; Gra¨tzel, M.; Park, N.-G., “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2012, 2, 591-597.
[11] Jeng, J.-Y.; Chiang, Y.-F.; Lee, M.-H.; Peng, S.-R.; Guo, T.-F.; Chen, P.; Wen, T.-C., “CH3NH3PbI3 perovskite/fullerene planar- hetero-junction hybrid solar cell”, Adv. Mater, 2013, 25, 3727–3732.
[12] Chiang, C.-H.; Lin, J.-W.; Wu, C.-G., “One-step fabrication of a mixed-halide perovskite film for a high-efficiency inverted solar cell and module”, J. Mater. Chem. A, 2016, 4, 13525-13533.
[13] Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin M. K.; Gratzel, M., “Sequential deposition as a route to high performance perovskite sensitized solar cell”, Nature, 2013, 499, 316–319.
[14] Chiang, C.-H.; Tseng, Z. –L.; Wu, C.-G., “Planar hetero-junction perovskite/PC71BM solar cells with efficiency over 16% via (2/1)-step spin-coating process”, J. Mater. Chem. A 2014, 2 15897 – 15903.
[15] Chiang, C.-H.; Nazeeruddin, M.-K.; Gratzel, M.; Wu, C.-G., “The synergistic effect of H2O and DMF toward stable and 20% efficiency inverted perovskite solar cells”, Energy Environ. Sci., 2017, 10, 808-817.
[16] Jeon, N.- J.; Noh, J.- H.; Kim, Y.- C.; Yang, W.- S.; Ryu, S.; Seok, S, Il., “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Materials, 2014, 13, 897-903.
[17] Chiang, C.-H.; Wu, C.-G., “Film grain-size related long-term stability of inverted perovskite solar cells”, ChemSusChem, 2016, 9, 2666 –2672.
[18] Dong Yang, Ruixia Yang, Jing Zhang, Zhou Yang, Shengzhong Liu and Can Li. “High efficiency flexible perovskite solar cells using superior low temperature TiO2”, Energy Environ. Sci, 2015, 8, 3208-3214.
[19] Fabrizio Giordano, Antonio Abate, Antonio Abate, Michael Saliba, Taisuke Matsui, Sang Hyuk Im, Shaik M. Zakeeruddin, Mohammad Khaja Nazeeruddin, Anders Hagfeldt and Michael Graetzel. “Enhanced electronic properties in mesoporous TiO2 via lithium doping for high-efficiency perovskite solar cells”, Nature Communications, 2016, 7, 10379-10-385.
[20] Yaowen Li, Yue Zhao, Qi Chen, Yang (Michael) Yang, Yongsheng Liu, Ziruo Hong, Zonghao Liu, Yao-Tsung Hsieh, Lei Meng, Yongfang Li, and Yang Yang. “A multifunctional fullerene derivative for interface engineering in perovskite solar cells”, J. Am. Chem. Soc, 2015, 49, 15540-15547.
[21] Feilong Cai, Liyan Yang, Yu Yan, Jinghui Zhang, Fei Qin, Dan Liu, Yi-Bing Cheng, Yinhua Zhou and Tao Wang. “Eliminated hysteresis and stabilized power output over 20% in planar heterojunction perovskite solar cells by compositional and surface modifications to the low-temperature-processed TiO2 layer”, J. Mater. Chem. A, 2017, 5, 9402–9411.
[22] Ya-Qing Zhou, Bao-Shan Wu, Guan-Hua Lin, Yang Li, Di-Chun Chen, Peng Zhang, Ming-Yu Yu, Bin-Bin Zhang, and Da-Qin Yun.“Enhancing performance and uniformity of perovskite solar cells via a solution-processed C70 interlayer for interface engineering”, ACS Appl. Mater. Interfaces, 2017, 9, 33810−33818.
[23] Tiantian Cao, Zhao-Wei Wang, Yijun Xia, Bo Song, Yi Zhou, Ning Chen, and Yongfang Li. “Facilitating electron transportation in perovskite solar cells via water-soluble fullerenol interlayers”, ACS Appl. Mater. Interfaces, 2016, 8, 18284–18291.
[24] Xiong Li, M. Ibrahim Dar, Chenyi Yi, Jingshan Luo, Manuel Tschumi, Shaik M. Zakeeruddin, Mohammad Khaja Nazeeruddin, Hongwei Han and Michael Grätzel. “Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides”, Nature Chemistry, 2015, 7, 703-711.
[25] Tiantian Cao, Peng Huang, Kaicheng Zhang, Ziqi Sun, Kai Zhu, Ligang Yuan, Kang Chen, Ning Chen and Yongfang Li. “Interfacial engineering via inserting functionalized water-soluble fullerene derivative interlayers for enhancing the performance of perovskite solar cells”, J. Mater. Chem. A, 2018, 6, 3435–3443.
指導教授 吳春桂 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明