博碩士論文 105327038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:234 、訪客IP:3.138.126.144
姓名 鍾奕晨(Yi-Chen Zhong)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 一種應用於UV-LED系統光源設計的光分布演算法之研究
相關論文
★ 直下式背光模組最佳化之設計★ 反射式發光二極體光源之近燈頭燈設計
★ 指紋辨識之光學成像系統設計★ 微型投影機之LED光源設計
★ 具積體型稜鏡體之指紋辨識光學模組的光學特性分析研究★ 應用田口穩健設計法於特殊函數調變變化規範下的絕熱式光方向完全耦合器波導結構設計優化
★ 雙反射面鏡型太陽能集光模組設計★ 使用光線追跡法設計軸對稱太陽能集光器
★ 應用於直下式背光模組之邊射型發光二極體設計與其模組研究★ 高功率LED二次光學透鏡模組設計
★ 微型雷射投影機光學設計★ LED陣列用於室內照明之設計與驗證
★ 應用於聚光型太陽光電系統之二次光學元件設計與分析★ 一種色溫及色彩可控制的多光源燈具設計
★ 運用光場程式化技巧快速設計LED直下式背光模組之研究★ 應用於彩色共焦顯微術之繞射元件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究目標為建立一套應用於UV-LED系統光源的設計方法,此設計方法主要步驟如下:(1)將單光源之輻射照度光場分布模型化,(2)建立一多光源光分布函數演算法,(3)使用二次微分法對多光源間距進行最佳化,(4)建立一鏡像虛擬光源演算法,(5)將演算法計算結果輸入光學模擬軟體進行優化設計。
本研究首先以最小平方法將單光源的輻射照度光場分布進行模型化,並建立演算程式,接著建立一多光源光分布函數演算法,此演算法能將多個光分布函數模型進行疊加計算,可根據目標將多光源系統光場分布最佳化。然後我們使用此光分布函數演算法對光源以最密堆積排列之UV-LED平行曝光機的光源排列間距進行設計,對光分布函數多點進行二次微分,快速計算出在光場不同位置中,有著較佳輻射照度均勻度的光源排列間距,來達到平行曝光機目標面積內之輻射照度均勻度92%之設計要求。再來為增加平行曝光機之可使用面積,本研究透過改變光源位置以及使用反射元件的方式,利用多光源陣列邊緣的光線提升目標面積邊緣較低之輻射照度值,並以鏡像虛擬光源法撰寫一套演算法,計算較佳的光源以及反射元件相對位置,最後將結果輸入光學模擬軟體進行優化設計。
根據設計結果顯示,本研究成功設計出在DSR = 10下,光源間距d = 31.2mm,目標面積輻射照度均勻度達92%之UV-LED平行曝光機,目標面積 x方向寬度102mm,y方向寬度114 mm,以及一目標面積x方向寬度達117mm之掃描式曝光機,此結果證明了本研究所建立之技術應用於UV-LED系統光源的可行性,提供了一種準確的設計方法,使得設計者可以根據需求快速地計算UV-LED光源排列方式以及反射元件適當的擺放位置。
摘要(英) The purpose of this thesis is proposing a design method for a UV-LED light source system. The primary steps of this design method are as follows: (1) modeling the irradiance distribution of a single light source on the optical field, (2) establishing a light spread function(LSF) algorithm of multi-light source system, (3) optimizing the source-to-source spacing by the secondary derivative method, (4) establishing an algorithm by the mirror virtual light source method, (5) inputing the algorithm calculation result to the optical simulation software for optimal design.
First, we model the irradiance distribution of a single light source on the optical field by using the nonlinear least squares method and establish a LSF algorithm, which can calculate the irradiance distribution of the multi-light source system, optimizing the irradiance distribution of optical field. Next, the UV-LED collimated exposure machine with the light source arranged in sphere packing are optimized designed by the LSF method and use the the secondary derivative method to quickly calculate the source-to-source spacing of the better illuminance uniformity of irradiance in different positions of the optical field. After that, in order to increase the usable area size of collimated exposure machine, this study utilizes light from the edge of the multi-light source array to promote the lower irradiance position, and optimizes the position of the light source and uses the reflective element to establish an algorithm by the mirror virtual light source method. Finally, the preferred relative position of the light source and the reflective element are input to the optical simulation software for optimal design.
According to the design results, this study successfully designed a UV-LED collimated exposure machine with DSR = 10, source-to-source spacing d=31.2mm, target area uniformity of irradiance of 92%, target area x direction width 102mm, y direction width 114 mm, and a scanning exposure machine with a target area of x direction width of 117 mm. This result proves the feasibility of applying the technology to UV-LED light source systems, and provides a precise design method which enables designers to quickly choose sources and reflective element positions according to the requirements.
關鍵字(中) ★ 光分布函數
★ 多光源照輻射度分布演算法
關鍵字(英) ★ light spread function
★ multiple irradiance distribution algorithm
論文目次 第一章、緒論 1
1-1研究背景 1
1-1-1點光源近似演算法介紹 1
1-1-2 UV-LED應用於PCB製程發展概況 3
1-1-3曝光機介紹 5
1-2研究動機與目的 7
1-3 文獻回顧 7
1-3-1 UV-LED曝光機 7
1-3-2多光源設計回顧 9
1-4 論文架構 14
第二章、基礎理論 15
2-1輻射度學 15
2-1-1輻射通量 15
2-1-2立體角 15
2-1-3輻射強度 16
2-1-4輻射照度 16
2-1-5輝度 16
2-1-6輻射出射度 16
2-2 輻射度學的餘弦定理 17
2-3輻射照度均勻度 18
第三章、光分布函數理論與分析 19
3-1 輻射照度分布函數化 19
3-2非線性最小平方回歸法 19
3-3平均絕對誤差 22
3-4輻射照度分布演算方法介紹 23
3-5輻射照度疊加計算 27
3-6多光源光分布函數的平坦分布計算 28
第四章、輻射照度分布演算法於設計平行曝光機之應用 29
4-1研究架構 29
4-2 UV-LED平行曝光機的光源排列設計 30
4-2-1 UV-LED準直多光源排列演算法 30
4-2-2 UV-LED準直光源排列模擬驗證 40
4-3 UV-LED平行曝光機之反射元件設計 43
4-3-1反射元件設計目標與方法 43
4-3-2鏡像光源虛擬法 49
4-4 掃描式UV-LED平行曝光機設計 57
4-4-1反射元件設計目標與方法 57
4-4-2 傾斜反射元件之虛擬光源法 58
第五章、結論與未來展望 66
5-1 結論 66
5-2 未來展望 67
參考文獻 [1] Moreno, I., Avendaño-Alejo, M., & Tzonchev, R. I. (2006). Designing light-emitting diode arrays for uniform near-field irradiance. Applied optics, Vol. 45(10), pp. 2265-2272.
[2] Moreno, I., Sun, C. C., & Ivanov, R. (2009). Far-field condition for light-emitting diode arrays. Applied optics, Vol. 48(6), pp. 1190-1197.
[3] Sun, C. C., Chien, W. T., Moreno, I., Hsieh, C. C., & Lo, Y. C. (2009). Analysis of the far-field region of LEDs. Optics express, Vol. 17(16), pp. 13918-13927.
[4] USHIO Inc, Super high-pressure UV lamps, from:
http://www.ushio.com.tw/tw/products/list/lamp/lamp_01.html
[5] Schindler, K., Leischner, U., Lopper, C., Striebel, T., Kaiser, P., & Schoembs, U. (2017). High Intensity UV-LED Mask Aligner for Applications in Industrial Research. In MikroSystemTechnik 2017, Congress pp. 1-4.
[6] Muramoto, Y., Kimura M., & Nouda, S. (2014). Development and future of ultraviolet light-emitting diodes: UVLED will replace the UV lamp, Semicond. Sci. Technol, Vol. 29(8), p. 084004.
[7] Kirchauer, H. (1998). Photolithography simulation, TU Vienna: Institute for Microelectronics.
[8] Darling, B. B., lecture notes on photolithography, from: https://users.wfu.edu/ucerkb/Nan242/L15-Photolithography.pdf
[9] May, G. S., & Sze, S. M. (2004). Fundamental of Semiconductor Fabrication. Hoboken, NJ: John Wiley & Sons Inc.
[10] Prahl, S. A., Keijzer, M., Jacques, S. L., & Welch, A. J. (1989). A Monte Carlo Model of Light Propagation in Tissue, SPIE Institute Series Vol. 10305, p. 1030509.
[11] Guijt, R. M., & Breadmore, M. C. (2008). Maskless photolithography using UV LEDs. Lab on a Chip, Vol. 8(8), pp. 1402-1404.
[12] Huang, C. K., & Sung, J. G. (2009). The application of UV-LEDs to printed circuit board process. In 2009 4th International Microsystems, Packaging, Assembly and Circuits Technology Conference (pp. 613-616). IEEE.
[13] Moore, B. T., Dawson, R., Fulford, H. J., Gardner, Jr.M. I., Hause, F. N., Michael, M. W., & Wristers, D. J. (1998). Individually controllable radiation sources for providing an image pattern in a photolithographic system. U.S. Patent No. US5840451A.
[14] Domanowski, P. (2009). Process and apparatus for the production of collimated uv rays for photolithographic transfer. U.S. Patent No. US20090244510A1.
[15] 郭信宏(2016),一種應用於類面光源陣列的光場演算技術之研究(博士論文),國立中央大學。
[16] Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons. pp. 15-17.
[17] 徐安永(2017),一種應用於準直系統光源的光照度分布演算之研究(碩士論文),國立中央大學。
[18] Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. John Wiley & Sons. pp. 15-17.
[19] Kuo, S. H., & Chen, C. F. (2016). Design of direct LED backlighting based on an analytical method of uniform illumination. Journal of Display Technology, Vol 12(10), pp. 1089-1096.
[20] Bass, M., Van Stryland, E.W. (1994). Handbook of Optics Vol. 2 (2nd ed.), McGraw-Hill. ISBN 0070479747.
[21] Koh, T. M., Fu, K., Fang, Y., Chen, S., Sum, T. C., Mathews, N., ... & Baikie, T. (2013). Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells. The Journal of Physical Chemistry C, Vol. 118(30), pp. 16458-16462.
指導教授 陳奇夆 審核日期 2019-6-27
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明