博碩士論文 106329010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:12 、訪客IP:3.14.144.240
姓名 李兆修(Chao-Hsiu Li)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 低密度雙相富鋁高熵合金之微結構觀察與其機械性質研究
(Microstructure and mechanical properties of low density dual-phase Al-rich high entropy alloys)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究旨在設計中低密度高熵合金之成分,探討Al Ti Cr Mn V 各個元素對於此合金系統的微結構、熱穩定和機械性質等影響。為設計密度低於5 g/cm3 的低密度合金,以Al為主要成分,配合高熵合金之設計參數規範,加入Ti Cr Mn V 四種元素,以不同比例添加至四元及五元合金。
  經XRD微結構分析得知AlTiCrMn、AlTiCrMnV系列合金皆可成為BCC加FCC雙相固溶體,根據合金比例不同,其硬度落在250至500 Hv,其中以Al50(TiCrMn)45V5具有最佳的機械性質表現,其硬度值為355Hv,藉由SEM影像分析計算其相比例隨著Ti Cr Mn的變化及由EDS分析雙相中的元素分別含量之結果可詳知Ti為FCC穩定劑,Cr Mn V為BCC穩定劑,此外發現添加V之後,在400至1000度之間有優異的相熱穩定性,更進一步得知最佳的均質化溫度為800°C。在壓縮測試中,Al50(TiCrMn)45V5擁有最大的壓縮強度為1900MPa,降伏強度為900MPa,壓縮延性為32%。
摘要(英) This study aims to design the high entropy alloy with low density. Investigate the effect of each element of Al Ti Cr Mn V on the microstructure, thermal stability and mechanical properties, etc. To reach the goal of alloy density less than 5 g/cm3, aluminum was designated as the main element and follows with the design specification of high entropy alloys to add titanium, chromium, manganese and vanadium to from the quaternary alloy or quinary alloys.
The XRD results show that AlTiCrMn and AlTiCrMnV series alloys can form dual-phase solid solution (BCC and FCC). The hardness varies from 250 to 500 Hv according to the different alloy compositions. Additionally, we can figure out the effect of Ti Cr Mn additive on BCC and FCC by phase proportion calculation from SEM image analyses as well as the semiquantitative analysis by EDS. Titanium is regarded as FCC stabilizer and the elements of chromium, manganese and vanadium are regarded within BCC stabilizer. Moreover, the addition of vanadium can increase the thermal stability of phase in 400 to 1000°C. The optimum homogenization temperature is 800°C. Al50(TiCrMn)45V5 show the best mechanical properties in compression test, 900MPa of yield strength, 1900Mpa of ultimate strength , and 32% plastic strain.
關鍵字(中) ★ 高熵合金
★ 低密度
★ 雙相
★ 富鋁
★ 固溶
關鍵字(英) ★ high entropy alloys
★ low density
★ dual-phase
★ Al-rich
★ solid solution
論文目次 中文摘要 I
Abstract II
致謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
一、 緒論 1
1-1 前言 1
1-2 研究目的 1
二、文獻回顧 3
2-1 高熵合金發展及定義 3
2-2 高熵合金形成參數 4
2-3 高熵合金四大效應 5
2-3-1 高熵效應 5
2-3-2 晶格應變效應 6
2-3-3 遲緩擴散效應 7
2-3-4 雞尾酒效應 7
2-4 新型高熵合金發展及設計 8
2-4-1 非等比例高熵合金 8
2-4-2 低密度高熵合金 9
2-4-3 非等比例低密度高熵合金 9
2-5 合金設計計算 10
2-5-1 固溶體之參數計算 10
2-5-2 合金之密度預測及真實密度 11
三、實驗方法 20
3-1 元素選擇及設計方法 20
3-2 合金製備 20
3-3 均質化熱處理 21
3-4 合金之微結構分析 21
3-4-1 X光繞射儀(XRD) 21
3-4-2 光學顯微鏡(Optical Microscopy) 22
3-4-3 掃描式電子顯微鏡(SEM) 22
3-4-4 能量散射光譜儀(EDS) 22
3-5 熱性質分析 23
3-5-1 試片製作 23
3-5-2 熱示差掃描熱分析儀(DSC) 23
3-6 機械性質分析 23
3-6-1 維氏硬度測試 23
3-6-2 壓縮測試 24
3-7 穿透式電子顯微鏡(TEM) 25
四、結果討論 34
4-1 密度計算 34
4-2 第一階段 - Al(80-X)Ti20(CrMn)X, (X=20,30,40) 34
4-2-1 合金成分設計 34
4-2-2 微結構分析 35
4-2-3 機械性質 36
4-3 第二階段 - Al50系列 36
4-3-1 合金成分設計 36
4-3-2 微結構分析 37
4-3-3 Ti Cr Mn 對雙相結構之影響 38
4-3-4 機械性質 40
4-4 熱處理對Al50系列之影響 41
4-4-1 微結構 41
4-4-2 機械性質 42
4-5 第三階段 - Al50(TiVCr)(50-X)VX, (X=5, 12.5, 20) 42
4-5-1 合金成分設計 42
4-5-2 微結構 43
4-5-3 熱處理之微結構 44
4-5-4 機械性質 45
4-5-5 AlTiCMnV系列合金之均質化 45
4-6 DSC熱性質分析 46
4-7 破裂面之分析 46
4-8 穿透式電子顯微鏡分析 47
五、結論 83
參考文獻 84
參考文獻 1. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang. Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), pp.299-303. (2004).
2. Y. Y. Chen, T. Duval, U. D. Hung, J. W. Yeh and H. C. Shih. Microstructure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel. Corrosion Science, 47(9), pp.2257-2279. (2005).
3. Y. Y. Chen, U. T. Hong, H. C. Shih, J. W. Yeh and T. Duval. Electrochemical kinetics of the high entropy alloys in aqueous environments—a comparison with type 304 stainless steel. Corrosion Science, 47(11), pp.2679-2699. (2005).
4. C. Y. Cheng, Y. C. Yang, Y. Z. Zhong, Y. Y. Chen, T. Hsu and J. W. Yeh. Physical metallurgy of concentrated solid solutions from low-entropy to high-entropy alloys. Current Opinion in Solid State and Materials Science, 21(6), pp.299-311. (2017).
5. ASM Handbook Volume 2: Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. Materials Park, OH: ASM International. (1990).
6. ASM Handbook, Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys. Materials Park: ASM International. (1990).
7. X. Yang, Y. Zhang and P. K. Liaw. Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys. Procedia Engineering, 36, pp.292-298. (2012).
8. O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle and C. F. Woodward. Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. Journal of Alloys and Compounds, 509(20), pp.6043-6048. (2011).
9. L. Lilensten, J. P. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot. New structure in refractory high-entropy alloys. Materials Letters, 132, pp.123-125. (2014).
10. C. R. LaRosa, M. Shih, C. Varvenne, and M. Ghazisaeidi. Solid solution strengthening theories of high-entropy alloys. Materials Characterization, 151, pp.310-317. (2019).
11. J. Tu, L. Liu, Y. Dou, C. Huang, L. Tan, L. Hu and Z. Zhou. Deformation and annealing behaviors of as-cast non-equiatomic high entropy alloy. Materials Science And Engineering: A, 737, pp.9-17. (2018).
12. K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe. Non-equiatomic high entropy alloys: Approach towards rapid alloy screening and property-oriented design. Materials Science And Engineering: A, 648, pp.183-192. (2015).
13. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe. A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Materialia, 72-73, pp.5-8. (2014).
14. J. W. Yeh. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648. (2006).
15. A. Takeuchi and A. Inoue. Quantitative evaluation of critical cooling rate for metallic glasses. Materials Science and Engineering: A, 304-306, pp.446-451. (2001).
16. A. R. Miedema, P. F. de Châtel and F. R. de Boer. Cohesion in alloys — fundamentals of a semi-empirical model. Physica B+C, 100(1), pp.1-28. (1980).
17. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. Solid-Solution Phase Formation Rules for Multi-component Alloys. Advanced Engineering Materials, 10(6), pp.534-538. (2008).
18. X. Yang and Y. Zhang. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Materials Chemistry and Physics, 132(2-3), pp.233-238. (2012).
19. J. W. Yeh. Recent progress in high-entropy alloys. Annales de Chimie Science des Matériaux, 31(6), pp.633-648. (2006).
20. J. W. Yeh. 高熵合金的發展. 華岡工程學報, (27), pp.1-18. (2011).
21. D. Gaskell. Introduction to the thermodynamics of materials. 3rd ed. Washington: Taylor & Francis, pp.80-84. (1995).
22. R. Swalin. Thermodynamics of solids. 2nd ed. New York: Wiley, pp.35-41. (1972).
23. K. Y. Tsai, M. H. Tsai and J. W. Yeh. Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), pp.4887-4897. (2013).
24. J. M. Wu, S. J. Lin, J. W. Yeh, S. Chen, Y. S. Huang and H. C. Chen. Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content. Wear, 261(5-6), pp.513-519. (2006).
25. C. J. Tong, M. R. Chen, J. W. Yeh, S. J. Lin, S. K. Chen, T. T. Shun and S. Y. Chang. Mechanical performance of the Al x CoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metallurgical and Materials Transactions A, 36(5), pp.1263-1271. (2005).
26. Y. C. Liao. (2017). 中低密度高熵合金之合金設計與其微結構變化之研究. 國立中央大學.
27. N. D. Stepanov, N. Y. Yurchenko, D. V. Skibin, M. A. Tikhonovsky and G. A. Salishchev. Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. Journal Of Alloys And Compounds, 652, pp.266-280. (2015).
28. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw. Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), pp.333. (2016)
29. R. Song, L. J. Wei, C. X. Yang and S. J. Wu. Phase formation and strengthening mechanisms in a dual-phase nanocrystalline CrMnFeVTi high-entropy alloy with ultrahigh hardness. Journal Of Alloys And Compounds, 744, pp.552-560. (2018).
30. Z. Li, K. G. Pradeep, Y. Deng, D. Raabe and C. C. Tasan. Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature, 534(7606), pp.227-230. (2016).
31. R. Li, J. C. Gao and K. Fan. Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions. Materials Science Forum, 686, pp.235-241. (2011).
32. Y. Jia, S. Wu, X. Ma and G. Wang. Novel Ultralight-Weight Complex Concentrated Alloys with High Strength. Materials, 12(7), pp.1136. (2019).
33. R. Li, J. C. Gao and K. Fan. Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys. Materials Science Forum, 650, pp.265-271. (2010).
34. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw. Design of Light-Weight High-Entropy Alloys. Entropy, 18(9), pp.333. (2016).
35. L. Y. Chen, A. T. Qiu, L. J. Liu, M. Jiang, X. G. Lu and C. H. Li. Thermodynamic modeling of the Ti–Al–Cr ternary system. Journal Of Alloys And Compounds, 509(5), pp.1936-1946. (2011).
36. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu and Y. Yang. High-entropy alloy: challenges and prospects. Materials Today, 19(6), pp.349-362. (2016).
37. L. Liu, J. B. Zhu, L. Li, J. C. Li and Q. Jiang. Microstructure and tensile properties of FeMnNiCuCoSnx high entropy alloys. Materials & Design, 44, pp.223-227. (2013).
38. S. GUO and C. T. LIU. Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Progress In Natural Science: Materials International, 21(6), pp.433-446. (2011).
39. D. B. Miracle and O. N. Senkov. A critical review of high entropy alloys and related concepts. Acta Materialia, 122, pp.448-511. (2017).
40. M. H. Tsai and J. W. Yeh. High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), pp.107-123. (2014).
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2019-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明