博碩士論文 106329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:10 、訪客IP:18.116.36.192
姓名 嚴豐年(Feng-Nien Yen)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 Cu摻雜至La0.8Sr0.2CuxMn1-xO3 (LSCxM,x=0.1、0.2、0.3) 作為中低溫SOFC陰極之可行性研究
(On the copper doping of La0.8Sr0.2MnO3 (LSM) cathode for IT-SOFCs)
相關論文
★ 1M KOH中Ag-Cu、Ag-Co二元薄膜觸媒對氧還原之催化★ Mg2Ni1-xCux合金在6M KOH水溶液中之電化學吸放氫性質及相關腐蝕行為之研究
★ 以電化學方法在鋅箔上製備氧化鋅奈米結構★ 固態氧化物燃料電池陰極 La0.8Sr0.2Mn1−xRuxO3之製作與特性研究
★ 奈米氧化鋅結構之電化學研製及其在發光二極體之應用★ 銅微柱表面之電化學析鍍氧化鋅奈米結構研究
★ 香草醛在含50 V% 乙二醇低氯離子溶液中對AA6060鋁合金之腐蝕抑制研究★ 磁控濺鍍製備鋯、鈦共摻氧化鋅薄膜之結構與光電特性分析
★ 即時影像監控導引下連續電鍍製作銅-鋅合金微柱並研究其結構與機械性質★ 鑭、鍶、銀、錳氧化物之製備與其作為固態氧化物燃料電池陰極之研究
★ Photodetector - Light Harvesting and specific surface Enhancement (LivE)★ 具奈米結構赤鐵礦之製備及其在光電化學行為研究
★ 以溶凝膠法製備鋁鈦共摻雜氧化鋅薄膜並研究其微結構,腐蝕及光電化學之特性★ Ba0.5Sr0.5Co0.8Fe0.2O3-δ-La3Ni2O7+δ複合 結構應用於P-SOFC陰極之可行性研究
★ 銅鎳合金微結構之微電鍍研究★ 以微電鍍法製備三維銅錫介金屬化合物微結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本研究使用甘胺酸-硝酸鹽燃燒合成法製備具有鈣鈦礦結晶結構(La0.8Sr0.2MnO3;LSM,La0.8Sr0.2CuxMn1-xO3 x=0.1、0.2、0.3;LSC1M;LSC2M;LSC3M)之陰極粉末。探討前驅硝酸鹽溶液經由調整不同pH值,甘胺酸硝酸比(g/n ratio),以及初生粉體在不同煆燒溫度(800、900、1000、1100 ℃)之結晶結構、形貌、熱機械性質等,再利用最好之參數製成固態氧化物燃料電池(SOFC),進行電化學測試。經由X光繞射分析結晶結構以及掃描式電子顯微鏡觀察表面微結構,發現在pH=3、4以及g/n=1.00、1.25有最完整之特徵峰以及粉體形貌,由熱膨脹分析發現LSM4/1.25與電解質BCZY之熱膨脹係數最為相近;導電度可達495.38 S/cm,進行性能測試結果顯示在操作溫度800℃擁有最高之功率密度:41.8 mW/cm2,而摻雜銅進入LSM之實驗發現,導電度分析在LSC2M有最高之導電度提升,由495.38 S/cm提升到858.26 S/cm,進行性能結果測試發現LSM4/1.25摻雜銅取代錳有效能60%之提升,在操作溫度700℃從22.33 mW/cm2提升到37.20 mW/cm2,EIS實驗發現極化阻抗Rp下降了4.55 Ωcm2。
摘要(英) In this study, the nanostructured perovskite La0.8Sr0.2MnO3 (LSM) and La0.8Sr0.2Mn1-xCuxO3 (note as x=0.1; LSC1M, 0.2; LSC2M, 0.3; LSC3M) prepared by the glycine-nitrate combustion synthesis method were considered as a potential candidate for use as cathode in solid oxide fuel cells (SOFC) operated at intermediate-temperature. In the present work, combustion synthesis method was investigated by adjusting the pH of LSM nitrate solution (pH=2, 3, 4, 5) and ratio between glycine and nitrate (G/N= 0.75, 1.00, 1.25). The crystal structure and morphology of the powders after calcining were analyzed and also its thermal properties and electrochemical characteristic were discussed. The optimal combustion synthesis parameters (pH and G/N) were used to synthesize the LSCxM. Then the crystal structure and electrochemical properties were investigated. Finally, the feasibility for using as cathode in P-SOFC though combining LSM as cathode backbone and doping Cu to replace Mn. The results of LSM analysis showed that LSM1.00/3, LSM1.00/4, LSM1.25/3 and LSM1.25/4 were the optimal parameters for combustion synthesis whose crystal structure and morphology were the most suitable as cathode for SOFC. Among all, LSM1.25/4 was analyzed that its average particle size around 30nm. For the measurement of thermal expansion coefficient (TMA), the coefficient of LSM1.25/4 was about 14.36 × 10-6 K-1 which was the closest to that of electrolyte BCZY. In the results of four-probe DC conductivity measurement, LSM1.25/4 had the highest conductivity near 495.38 S/cm.The performance test results show that the highest power density is 41.8 mW/cm2 at 800 °C, and the experiment of doping copper into LSM found that the conductivity analysis has the highest conductivity increase in LSC2M, from 495.38 S/cm improved to 858.26 S/cm. The performance test showed that the LSM4/1.25 doped 0.2 copper-substituted manganese had a 60% improvement in efficiency, and the operating temperature was increased from 22.33 mW/cm2 to 37.20 mW/cm2 at 700 °C. The resistance Rp drops by 4.55 Ωcm2.
關鍵字(中) ★ 固態氧化物燃料電池
★ 燃燒合成法
★ LSM陰極材料
★ 銅摻雜
關鍵字(英) ★ Solid oxide fuel cell(SOFC)
★ Lanthanum-strontium- manganese-oxide
★ Copper doping
論文目次 摘要 i
Abstract ii
目錄 v
表目錄 viii
圖目錄 ix
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 2
第二章 實驗原理與文獻回顧 5
2-1燃料電池簡介 5
2-1-1固態氧化物燃料電池原理與簡介 6
2-1-2固態氧化物燃料電池類型 7
2-2固態氧化物電池元件 8
2-2-1電解質(Electrolyte) 8
2-2-2陽極(Anode) 9
2-2-3陰極(Cathode) 9
2-3陰極元件 10
2-3-1陰極傳導機制 10
2-3-2陰極晶體結構 11
2-3-3陰極材料製備方式 13
2-4電化學分析原理 15
2-4-1直流電極化曲線(I-V Curve)原理 16
2-4-2電化學交流阻抗頻譜(EIS)原理 18
2-5文獻回顧 21
2-5-1固態氧化物燃料電池陰極材料 21
2-5-2固態氧化物燃料電池陰極合成法 23
2-5-3 複合陰極製程 24
第三章 實驗方法 25
3-1 實驗原料 25
3-2元件樣品製備、條件與時驗流程 25
3-2-1陰極粉末製備流程 25
3-2-2陰極導電度樣品製備流程 27
3-2-3陰極熱膨脹量測樣品製備流程 27
3-2-4陰極膏製備流程 27
3-2-5電解質製備 28
3-2-6半電池製備 28
3-3分析設備 29
3-3-1 X光晶體繞射儀器(X-Ray diffraction; XRD) 29
3-3-2掃描式電子顯微鏡(Scanning Electron Microscope; SEM) 30
3-3-4比表面積與孔隙分佈分析儀(Specific Surface Area and Porosimetry Analyzer;BET) 31
3-3-5導電度量測 31
3-3-6直流極化曲線測試平台 32
3-3-7電化學交流阻抗頻譜儀 32
第四章 結果 34
4-1X光晶體繞射分析 34
4-1-1LSM之X光繞射圖譜 34
4-1-2LSCxM之X光繞射圖譜 35
4-2LSM陰極表面形貌觀察 35
4-3陰極粉末熱種分析 36
4-4LSM熱膨脹係數分析 36
4-5陰極長碇導電度量測 36
4-5-1LSM之導電度 36
4-5-2LSCxM之導電度 37
4-6直流極化曲線測試分析 37
4-6-1LSM之直流極化曲線 37
4-6-2LSCxM之直流極化曲線 38
4-7電化學交流阻抗頻譜分析 38
4-7-1LSM之交流阻抗頻譜 38
4-7-2LSCxM之交流阻抗頻譜 39
第五章 討論 39
5-1燃燒合成法製備LSM與LSCxM粉末之探討 39
5-1-1LSM 39
5-1-2LSCxM 40
5-2陰極樣品特性分析之探討 41
5-2-1氧空缺 41
5-2-2熱膨脹係數 41
5-2-3導電性 42
5-3全電池性能分析 42
第六章 結論與未來工作 44
6-1結論 44
6-2未來工作 45
參考文獻 46

表目錄
表1- 1目前商用陰極材料[13-16] 50
表2-1 不同種類燃料電池之特性比較 51
表2-2 陰極材料合成法比較 52
表2-3 LSM不同元素比例之熱膨脹係數與測量溫度表 52
表2-4 以不同有機酸作為燃料,進行硝酸鹽燃燒合成法,其燃燒之結果比較 53
表3-1 實驗使用之化學藥劑與材料之廠牌與功用列表 54
表3-2 製備La0.8Sr0.2MnO3 (LSM)所需硝酸鹽水溶液中配置比例 55
表3-3 製備La0.8Sr0.2Mn0.9Cu0.1O3 (LSC1M)所需硝酸鹽水溶液中配置比例 55
表3-4 製備La0.8Sr0.2Mn0.8Cu0.2O3 (LSC2M)所需硝酸鹽水溶液中配置比例 56
表3-5 製備La0.8Sr0.2Mn0.7Cu0.3O3 (LSC3M)所需硝酸鹽水溶液中配置比例 56
表3-6 LSM、LSCxM初生粉末煆燒條件 57
表3-7 陰極膏配製比例 57
表3-8 電解質BaCe0.6Zr0.2Y0.2O3 (BCZY)配方比例 57
表3-9 BCZY電解質粉末煆燒條件 58
表3-10 BCZY電解質基板燒結條件 58
表3-11 LSM、LSCxM陰極膏燒結條件 58
表3-12 白金膏燒結條件 58
表3-13 LSM與LSCxM陰極粉末熱重分析(TGA)之實驗溫度設定 59
表4-1 LSM1.00、LSM1.25粉末樣品經1100°C煆燒後之半高寬(FWHM) 59
表4-2 LSM1.00/3、LSM1.00/4、LSM1.25/3與LSM1.25/4粉末樣品經1100°C煆燒後之比表面積(BET) 59
表4-3 LSM1.00/3、LSM1.00/4、LSM1.25/3與LSM1.25/4粉末樣品經1200°C燒結後之熱重分析(TGA) 60
表4- 4 LSM1.00/3、LSM1.00/4、LSM1.25/3與LSM1.25/4陰極最高功率密度(單位: mW/cm2) 60
表4- 5 LSCxM陰極最高功率密度(單位: mW/cm2) 60
表4- 6 LSM1.25/3與LSC2M-1.25/3銅摻雜陰極最高功率密度(單位: mW/cm2) 61
表4- 7 LSM1.00/3、LSM1.00/4、LSM1.25/3與LSM1.25/4半電池之歐姆阻抗Rohm、極化阻抗Rp及總阻抗Rt (單位: Ωcm2) 61
表4- 8 LSCxM半電池之歐姆阻抗Rohm、極化阻抗Rp及總阻抗Rt (單位: Ωcm2) 61
圖目錄
圖1- 1固態氧化物燃料電池理論計算所得與實際測量所得之面積比電阻隨操作溫度之變化情形,其中包含電池元件(陰極、電解質、陽極)與擴散之對面積比電阻 62
圖2- 1燃料電池種類及其工作環境與能源堆疊規模圖 62
圖2- 2燃料電池運作示意圖 63
圖2- 3 O-SOFC與P-SOFC傳導機制比較圖 63
圖2- 4平版型SOFC及其封裝架設 64
圖2- 5鈕扣型SOFC及其封裝架設 64
圖2- 6 SOFC電池支撐類型示意圖 65
圖2- 7陰極材料傳導類型(a)電子導體;(b)電子離子混合導體;(c)電子質子混合導體;(d)電子、質子與離子混合導體 65
圖2- 8 SOFC之三相界示意圖 66
圖2- 9以La0.6Sr0.4MnO3-δ作說明之三相界示意圖 66
圖2- 10鈣鈦礦結構示意圖 67
圖2- 11A、B位元素離子半徑對於鈣鈦礦結構之偏差影響 67
圖2- 12可應用在鈣鈦礦A、B位置的元素 68
圖2- 13 Ruddlesden-Popper(RP)層狀結構示意圖 68
圖2- 14理想與實際狀況之燃料電池直流極化曲線 69
圖2- 15電化學交流阻抗頻譜之施加電壓與電流回饋關係示意圖 69
圖2- 16正弦電壓擾動與正弦電流響應關係示意圖 70
圖2- 17交流阻抗Nyquist示意圖 70
圖2- 18等效電路模型示意圖 71
圖2- 19 Nd0.6Sr0.4Co0.8M0.2O3-δ(M=Ti、Cr、Mn、Fe、Co、Cu)在空氣氣氛下之氧空缺變化量 71
圖2- 20 Nd0.6Sr0.4Co0.8M0.2O3-δ(M=Ti、Cr、Mn、Fe、Co、Cu)在空氣氣氛下之導電度量測 72
圖2- 21 Nd0.6Sr0.4Co0.8M0.2O3-δ(M=Ti、Cr、Mn、Fe、Co、Cu)單電池在800°C下之直流極化曲線(陽極為Ni-GDC、電解質為LSGM) 72
圖2- 22以不同有機酸作為燃燒法燃料合成Ni0.5Zn0.5Fe2O4陶瓷粉末之XRD圖譜 73
圖2- 23甘胺酸-硝酸鹽燃燒法合成Ba0.5Sr0.5Co0.8Fe0.2O3,不同G/n比(a)0.25、(b)0.56、(c)0.84之XRD圖譜 73
圖2- 24甘胺酸在不同酸鹼值之硝酸鹽水溶液中,經燃燒法生成之粉末經1000°C煆燒5h後之XRD圖譜 74
圖2- 25固態反應法與燃燒合成法合成CuCrO2之BET吸附曲線比較圖 74
圖2- 26以LSM與YSZ製成電子離子混合導體之複合陰極示意圖 75
圖3- 1實驗架構圖 76
圖3- 2甘胺酸-硝酸鹽燃燒合成法粉末製備流程 77
圖3- 3長方形樣品之模具 78
圖3- 4圓形小碇樣品之模具 79
圖3- 5電解質BCZY粉末之XRD 79
圖3-6 圓形電解質基板之模具 80
圖3-7 四點式導電性量測示意圖 80
圖3-8 SOFC量測平台內部示意圖 81
圖4-1 燃燒法初生LSM粉末之XRD 81
圖4-2燃燒法初生LSM粉末與此粉末經不同溫度煆燒後所得之XRD圖譜 82
圖4-3 改變燃燒法製程參數(硝酸鹽溶液pH控制在2, 3, 4, 5;而 83
圖4-4 LSCxM (x = 0.1, 0.2, 0.3)粉末經1100°C煆燒2h後之XRD疊圖 84
圖4-5 控制燃燒法製程參數G/N固定在0.75,硝酸鹽溶液pH值分別在(a)2, (b) 3,(c) 4,(d) 5所得初生粉末,再經1100°C煆燒2h後之LSM0.75/2, LSM0.75/3, LSM0.75/4, LSM0.75/5樣品表面形貌,放大倍率為50000倍 85
圖4- 6控制燃燒法製程參數G/N固定在1.00,硝酸鹽溶液pH值分別在(a)2, (b) 3,(c) 4,(d) 5所得初生粉末,再經1100°C煆燒2h後之LSM1.00/2, LSM1.00/3, LSM1.00/4, LSM1.00/5樣品表面形貌,放大倍率為50000倍 86
圖4- 7 控制燃燒法製程參數G/N固定在1.25,硝酸鹽溶液pH值分別在(a)2, (b) 3,(c) 4,(d) 5所得初生粉末,再經1100°C煆燒2h後之LSM1.25/2, LSM1.25/3, LSM1.25/4, LSM1.25/5樣品表面形貌,放大倍率為50000倍 87
圖4- 8 燒結過之陰極(LSM1.25/4)與電解質(BCZY)介面處,放大倍率為50K 88
圖4- 9LSM1.00/3、LSM1.00/4、LSM1.25/3、LSM1.25/4陰極粉末經1100°C燒結1h後之熱重分析圖 88
圖4- 10LSM1.00/3、LSM1.00/4、LSM1.25/3、LSM1.25/4陰極樣品之熱膨脹係數對溫度作圖 89
圖4- 11LSM1.00/3、LSM1.00/4、LSM1.25/3、LSM1.25/4陰極樣品之導電度對溫度作圖 89
圖4- 12 LSC1M、LSC2M與LSC3M陰極樣品之導電度對溫度作圖 90
圖4- 13 Pt|BCZY(450µm)|LSM1.00/3在不同操作溫度下之直流極化曲線 90
圖4- 14 Pt|BCZY(450µm)|LSM1.00/4在不同操作溫度下之直流極化曲線 91
圖4- 15 Pt|BCZY(450µm)|LSM1.25/3在不同操作溫度下之直流極化曲線 91
圖4-16 Pt|BCZY(450µm)|LSM1.25/4在不同操作溫度下之直流極化曲線 92
圖4- 17 Pt|BCZY(450µm)|LSC1M在不同操作溫度下之直流極化曲線 92
圖4- 18 Pt|BCZY(450µm)|LSC2M在不同操作溫度下之直流極化曲線 93
圖4- 19 Pt|BCZY(450µm)|LSC3M在不同操作溫度下之直流極化曲線 93
圖4- 20 Pt|BCZY(450µm)|LSM1.25/3 (Pristine)、Pt|BCZY(450µm)|LSC2M (doped)在800°C之直流極化曲線比較 94
圖4- 21 Pt|BCZY(450µm)|LSM1.25/3 (Pristine)、Pt|BCZY(450µm)|LSC2M (doped)在700°C之直流極化曲線比較 94
圖4- 22 Pt|BCZY(450µm)|LSM1.25/3 (Pristine)、Pt|BCZY(450µm)|LSC2M (doped)在600°C之直流極化曲線比較 95
圖4- 23 本研究所使用之等效電路模型圖 95
圖4- 24 Pt|BCZY(450µm)|LSM1.00/3在不同操作溫度下之交流阻抗頻譜 96
圖4- 25 Pt|BCZY(450µm)|LSM1.25/3在不同操作溫度下之交流阻抗頻譜 96
圖4- 26 Pt|BCZY(450µm)|LSM1.25/4在不同操作溫度下之交流阻抗頻譜 97
圖4- 27 Pt|BCZY(450µm)|LSC1M在不同操作溫度下之交流阻抗頻譜 97
圖4- 28 Pt|BCZY(450µm)|LSC2M在不同操作溫度下之交流阻抗頻譜 98
圖4- 29 Pt|BCZY(450µm)|LSC3M在不同操作溫度下之交流阻抗頻譜 98
圖4- 30 Pt|BCZY(450µm)|LSM1.25/3 (Pristine)、Pt|BCZY(450µm)|LSC2M-1.25/3 (Doped)在不同操作溫度下之交流阻抗頻譜比較 99
圖5- 1 LSM1.00/3、LSM1.25/3與LSM1.25/4陰極阻抗在操作溫度800°C下之比較圖 99
圖5- 2 LSM1.00/3、LSM1.25/3與LSM1.25/4陰極阻抗在操作溫度700°C下之比較圖 100
圖5- 3 LSM1.00/3、LSM1.25/3與LSM1.25/4陰極阻抗在操作溫度600°C下之比較圖 100
圖5- 4 LSC1M、LSC2M與LSC3M陰極阻抗在操作溫度800°C下之比較圖 101
圖5-5 LSC1M、LSC2M與LSC3M陰極阻抗在操作溫度700°C下之比較圖 101
圖5-6 LSC1M、LSC2M與LSC3M陰極阻抗在操作溫度600°C下之比較圖 102
參考文獻 [1] W.R. Grove, “On voltaic series and the combination of gases by platinum”, Philosophical Magazine and Journal of Science, Series 3, 14, (1839) 127–130.
[2] Y. A. Cengel, Thermodynamics: An Engineering Approach, 7th Edition, McGraw-Hill, U.S.A, (2010).
[3] J. Hou, Z. Zhu, J. Qian, & W. Liu, “A new cobalt-free proton-blocking composite cathode La2NiO4+δ-LaNi0.6Fe0.4O3-δ for BaZr0.1Ce0.7Y0.2O3-δ-based solid oxide fuel cells”, Journal of Power Sources, 264, (2014) 64-75.
[4] L. Bi, S. Boulfrad, & E. Traversa, “Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides”, Chem. Sov. Rev, 43, (2014) 8255-8270.
[5] S. P. S. Badwa, S. Giddey, C. Munnings, & Kulkarni, A. , “Review of Progress in High Temperature Solid Oxide Fuel Cells”, Journal of the Australian Ceramics Society, 50, (2014) 23-37.
[6] Wikiwand, 2012, derive from:
http://www.wikiwand.com/zh-tw/%E8%B3%AA%E5%AD%90.
[7] Wikiwand, 2012, derive from:
https://zh.wikipedia.org/wiki/%E7%A6%BB%E5%AD%90%E5%8D%8A%E5%BE%84.
[8] T. S. John, C. Paul, “Solid Oxide Fuels Cells: Facts and Figures: Past Present and Future Perspectives for SOFC Technologies”, Springer, U.S.A, (2013).
[9] sunfire官方網站。檢自:
http://www.sunfire.de/en/products-and-technology.
[10] fuelcellmaterials官方網站。檢自: https://fuelcellmaterials.com/products/powders/cathode-powders/.
[11] elcogen官方網站。檢自:
http://www.elcogen.com/products/
[12] SOFCMAN官方網站。檢自:
http://www.sofcman.com/lscf.html.
[13] H. S. Kim,H. Nicola, “A Study of LSCF Cathode Material Prepared by Pechini Process for IT-SOFCs”, International Conference on Power and Energy Systems, Lecture Notes in Information Technology, (2012) 13.
[14] Schubert, U., & Hüsing, N. (2012). Synthesis of inorganic materials. John Wiley & Sons, (2004).
[15] C. T. Wu, “Preparation and Characterization of Lanthanum-Indium (Gallium)-Zirconium Oxides by Chemical Co-precipitation”, National Cheng Kung University, degree of master, (2003).
[16] D. H. Huang, “Synthesis and Electrochemical Properties of Sm-doped and Bi-doped Cerium Oxides Prepared by a Low Temperature Hydrothermal Method for SOFC Electrolyte”, National Taiwan Normal University, degree of master, (2004).
[17] C. H. Wu, “Modified combustion synthesis method to prepare nano (La0.7Sr0.3)MnO3 electrode powders for enhancing fatigue properties of Pb(Zn,Nb,Zr,Ti)O3 material system”, National Taipei University of Technology, degree of master, (2006).
[18] W. Zhou, Z. Shao, R. Ran , H. Gu , W. Jin , & N. Xu, “LSCF Nano-powder from Cellulose–Glycine‐Nitrate Process and its Application in Intermediate‐Temperature Solid‐Oxide Fuel Cells”, Journal of the American Ceramic Society, 91, (2008) 1155-1162.
[19] Z. Shao, W. Zhou, & Z. Zhu, “Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells”, Progress in Materials Science, 57, (2012) 804-874.
[20] B. Liu, Y. Zhang, “Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine-nitrate process for solid oxide fuel cell cathode”, Journal of Alloys and Compounds, 453, (2008) 418-422.
[21] Y. H. Lim, J. S. Yoon, C. E. Kim, & H. J. Hwang, “Electrochemical performance of Ba0.5Sr0.5CoxFe1-XO3-δ (x=0.2-0.8) cathode on a ScSZ electrolyte for intermediate temperature SOFCs”, Journal of Power Sources, 171, (2007) 79-85.
[22] 黃鎮江,「燃料電池」,修訂版,全華科技圖書股份有限公司,(2004).
[23] 衣寶蓮,「燃料電池-原理與應用」,初版,五南圖書出版股份有限公司,(2005).
[24] Taroco, H. A., Santos, J., Domingues, R. Z., & Matencio, T.. Ceramic materials for solid oxide fuel cells. Advances in Ceramics-Synthesis and Characterization, Processing and Specific Applications, (2011) 423-446.
[25] S. C. Singhai, K. Kendall, “High-Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications”, Elsevier, U.K., (2004).
[26] N. Q. Minh, “Ceramic Fuel Cells”, Journal of American Ceramic Society, 76, (1993) 563.
[27] N. Q. Minh, “Solid oxide fuel cell technology—features and applications”, Solid State Ionics, 174, (2004) 271-277.
[28] L. Fan, P. C. Su, “Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells”, Journal of Power Sources, 306, (2016) 366-377.
[29] S. B. Adler , “Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes”, Chemical Reviews, 104, (2004) 4791-4844.
[30] C. Li, K. C. K. Soh, & P. Wu, “Formability of ABO3 perovskites”, Journal of Alloys and Compounds, 372, (2004) 40-48.
[31] T. Ishihara, “Perovskite Oxide for Solid Oxide Fuel Cells”, Springer, U.S.A., (2009).
[32] H. Arai, T. Yamada, K. Eguchi, & T. Seiyama, “Catalytic combustion of methane over various perovskite-type oxides”, Applied Catalysis, 26, (1986) 265-276.
[33] S. N. Ruddlesden, P. Popper, “New compounds of the K2NiF4 type”, Acta Crystallographica, 10, (1957) 538-839.
[34] EG & G Technical Services Inc., “Fuel Cell Handbook”, 7th Eds, U.S.A., (2004).
[35] S. M. Haile, “Fuel cell materials and components”, Acta Materialia, 51, (2003) 5981-6000.
[36] R. O’Hayre, S. W. Cha, F. B. Prinz, & W. Colella, “Fuel Cell Fundamentals”, 2nd Edition, U.S.A., (2009).
[37] E. Povoden-Karadeniz, “Thermodynamic Database of the La-Sr-Mn-Cr-O Oxide System and Applications to Solid Oxide Fuel Cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, (2008).
[38] N. Y. Hsu, S. C. Yen, K. T. Jeng, & C. C. Chien, “Impedance studies and modeling of direct methanol fuel cell anode with interface and porous structure perspectives”, Journal of Power Sources, 161, (2006) 232-239.
[39] M. Zhi, G. Zhou, Z. Hong, J. Wang, R. Gemmen, K. Gerdes, A. Manivannan, D. Mae, N. Wu, “Single crystalline La0.5Sr0.5MnO3 microcubes as cathode of solid oxide fuel cell” The Royal Society of Chemistry, Energy Environ, 4, (2011) 139-144.
[40] J.-M. Bassat, Solid State Ionics 176 (37–38), (2005) 2717–2725.
[41] K.T. Lee, A. Manthiram, Solid State Ionics 178, (2007) 995–1000.
[42] T. W. Chiu, B. S. Yu, Y. R. Wang, K. T. Chen, & Y. T. Lin, “Synthesis of nanosized CuCrO2 porous powders via a self-combustion glycine nitrate process”, Journal of Alloys and Compounds, 509, (2011) 2933-2935.
[43] M. Juhl, Primdahl, S. Manon, C. M. Mogensen, “Performance/structure correlation for composite SOFC cathodes”, Journal of Power Sources, 61, (1996) 173-181.
[44] E. P. Murray, S. A. Barnett, “Oxygen transfer processes in (La, Sr)MnO3/Y2O3-stabilized ZrO2 cathodes: an impedance spectroscopy study”, Solid State Ionics, 110, (1998) 235-243.
[45] M. J. Jorgensen,M. Mogensen, “Impedance of Solid Oxide Fuel Cell LSM/YSZ Composite Cathodes”, Journal of The Electrochemical Society, 148, (2001) A433-A442.
[46] B. C. H. Steele, K. M. Hori, & S. Uchino, “Kinetic parameters influencing the performance of IT-SOFC composite electrodes”, Solid State Ionics, 135, (2000) 445-450.
[47] Q. A. Huang, , R. Hui, , B. Wang, , & J. Zhang,. “A review of AC impedance modeling and validation in SOFC diagnosis. ” Electrochimica Acta, 52(28), (2007) 8144-8164.
[48] L. A. Chick, L. R. Pederson, G. D. Maupin,J. L. Bates,L. E. Thomas,G. J. Exarhos, “Glycine-nitrate combustion synthesis of oxide ceramic powders”, Materials Letters, 10, (1990) 6-12.
[49] T. Noh , J. Ryu , J. Kim , Y.N. Kim , H. Lee ,“Structural and impedance analysis of copper doped LSM cathode for IT-SOFCs” Journal of Alloys and Compounds 557 (2013) 196–201.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2019-8-21
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明