參考文獻 |
[1] ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol. 1, Materials Park, OH : ASM International, 1990.
[2] ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol. 2, Materials Park, OH : ASM International, 1990.
[3] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau and S. Y. Chang, “Nanostructured High‐Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol. 6, pp. 299-303, 2004.
[4] X. Yang, Y. Zhang and P. K. Liaw, “Microstructure and Compressive Properties of NbTiVTaAlx High Entropy Alloys”, Procedia Engineering, Vol. 36, pp. 292-298, 2012.
[5] O. N. Senkov, J. M. Scott, S. V. Senkova, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, Vol. 509, pp. 6043-6048, 2011.
[6] L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot, “New structure in refractory high-entropy alloys”, Materials Letters, Vol. 132, pp.123-125.
[7] B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vols. 375-377, pp. 213-218, 2004.
[8] Y. Deng, C. C. Tasan, K.G. Pradeep, H. Springer, A. Kostka and D. Raabe, “Design of a twinning-induced plasticity high entropy alloy”, Acta Materialia, Vol. 94, pp.124-133, 2015.
[9] C. C. Tasan, Y. Deng, K. G. Pradeep, M. J. Yao, H. Springer and D. Raabe, “Composition Dependence of Phase Stability, Deformation Mechanisms, and Mechanical Properties of the CoCrFeMnNi High-Entropy Alloy System”, The Minerals, Metals & Materials Society, Vol. 66, pp. 1993-2001, 2014.
[10] M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vols. 72-73, pp. 5-8, 2014.
[11] K. G. Pradeep, C. C. Tasan, M. J. Yao, Y. Deng, H. Springer and D. Raabe, “Non-equiatomic High entropy alloys: Approach towards rapid alloy screening and property-oriented design”, Author’s Accepted Manuscript, Vol. 648, pp. 183-192, 2015.
[12] D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, Vol. 98, pp. 288-296, 2015.
[13] 葉均蔚, 高熵合金的發展, 華岡工程學報, Vol. 27, pp. 1-18, 2003.
[14] R. Cahn and P. Haasen, “Physical metallurgy”, 4th ed, Amsterdam: North-Holland.
[15] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw, “Solid-Solution Phase Formation Rules forMulti-component Alloys”, ADVANCED ENGINEERING MATERIALS, Vol. 10, pp. 534-538, 2008.
[16] X. Yang, Y. Zhang, “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp. 233-238, 2012.
[17] S. Guo, C. T. Liu, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol. 21, pp. 433-446, 2011.
[18] A. Takeuchi and A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, Vols. 304-306, pp.446-451, 2001.
[19] A. R. Miedema, P. F. de Châtel and F. R. de Boer, “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol. 100, pp. 1-28, 1980.
[20] C. S. Wu, P. H. Tsai, C. M. Kuo and C. W. Tsai, “Effect of Atomic Size Difference on the Microstructure and Mechanical Properties of High-Entropy Alloys”, Entropy, Vol. 20, pp. 967, 2018.
[21] J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol. 103, pp. 41-46, 2007.
[22] D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
[23] R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp. 35-41, 1972.
[24] Y. Zhou, D. Zhou, X. Jin, L. Zhang, X. Du and B. Li, “Design of non-equiatomic medium-entropy alloys”, SCIENTIFIC REPORTS, Vol. 8, pp. 1-9, 2018.
[25] Q. He and Y. Yang, “On Lattice Distortion in High Entropy Alloys”, Frontiers in Materials, Vol. 5, pp. 1-8, 2018.
[26] K. Y. Tsai, M. H. Tsai and J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, Vol. 61, pp. 4887-7897, 2013.
[27] S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, CURRENT SCIENCE, Vol. 85, pp. 1404-1406, 2003.
[28] L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, Vols. 631-632, pp. 227-232, 2013.
[29] W. Kai, F. P. Cheng, C. Y. Liao, C. C. Li, R. T. Huang and J. J. Kai, “The oxidation behavior of the quinary FeCoNiCrSix high-entropy alloys”, Materials Chemistry and Physics, Vol. 210, pp. 362-369, 2018.
[30] J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik and M. Danielewski, “Influence of Cu content on high temperature oxidation behavior of AlCoCrCuxFeNi high entropy alloys (x = 0; 0.5; 1)”, Intermetallics, Vol. 84, pp. 52-61, 2017.
[31] J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and H. C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261, pp. 513-519, 2006.
[32] B. Gludovatz, A. Hohenwarter, D. Catoor, E. H. Chang, E. P. George and R. O. Ritchie, “A fracture-resistant high-entropy alloy for cryogenic applications”, METAL ALLOYS, Vol. 345, pp. 1153-1158, 2014.
[33] J. Y. He, C. Zhu, D. Q. Zhou, W. H. Liu, T. G. Nieh and Z. P. Lu, “Steady state flow of the FeCoNiCrMn high entropy alloy at elevated temperatures”, Intermetallics, Vol. 55, pp. 9-14, 2014.
[34] B. F. Wang, X. R. Yao, C. Wang, X. Y. Zhang and X. X. Huang, “Mechanical Properties and Microstructure of a NiCrFeCoMn High-Entropy Alloy Deformed at High Strain Rates”, Entropy, Vol. 20, pp. 892, 2018.
[35] C. W. Tsai, M. H. Tsai, J. W. Yeh and C. C. Yang, “Effect of temperature on mechanical properties of Al0.5CoCrCuFeNi wrought alloy”, Journal of Alloys and Compounds, Vol. 490, pp. 160-165, 2010.
[36] O. N. Senkov, G. B. Wilks, J. M. Scott, and D. B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol. 19, pp. 698-706, 2011.
[37] W. D. Callister, D. G. Rethwisch, “Materials Science and Engineering”, Vol. 8, John Wiley & Sons Ltd, 2011.
[38] C. Y. Hsu, W. R. Wang, W. Y. Tang, S. K. Chen and J. W. Yeh, “Microstructure and Mechanical Properties of New AlCoxCrFeMo0.5Ni High-Entropy Alloys”, ADVANCED ENGINEERING MATERIALS, Vol. 12, pp.44-49, 2010.
[39] A. M. Giwa, P. K. Liaw, K. A. Dahmen and J. R. Greer, “Microstructure and small-scale size effects in plasticity of individual phases of Al0.7CoCrFeNi High Entropy alloy”, Extreme Mechanics Letters, Vol. 8, pp. 220-228, 2016.
[40] Y. J. Zhou, Y. Zhang, Y. L. Wang and G. L. Chen, “Solid solution alloys of AlCoCrFeNiTix with excellent room-temperature mechanical properties”, Applied Physics Letters, Vol. 90, pp. 181904, 2007.
[41] Z. W. Wang, I. Baker, Z. Cai, S. Chen, J. D. Poplawsky and W. Guo, “The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys”, Acta Materialia, Vol. 120, pp. 228-239, 2016.
[42] Z. M. Li, C. C. Tasan, H. Springer, B. Gault, and D. Raabe, “Interstitial atoms enable joint twinning and transformation induced plasticity in strong and ductile high-entropy alloys”, Scientific Reports, Vol. 7, pp. 1-7, 2017.
[43] L. B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He and J. Sun, “Heavy carbon alloyed FCC-structured high entropy alloy with excellent combination of strength and ductility”, Materials Science & Engineering A, Vol. 716, pp. 150-156, 2018.
[44] W. J. Joost, “Reducing Vehicle Weight and Improving U.S. Energy Efficiency Using Integrated Computational Materials Engineering”, the journal of the Minerals, Metals & Materials Society, Vol. 64, pp. 1032-1038, 2012.
[45] E. Schubert, M. Klassen, I. Zerner, C. Walz and G. Sepold, “Light-weight structures produced by laser beam joining for future applications in automobile and aerospace industry”, Journal of Materials Processing Technology, Vol. 115, pp. 2-8, 2001.
[46] K. K. Tseng, Y. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai and J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, Vol. 61, pp. 184-188, 2018.
[47] R. Li, J. C. Gao and K. Fan, “Microstructure and mechanical properties of MgMnAlZnCu high entropy alloy cooling in three conditions”, Materials Science Forum, Vol. 686, pp. 235-241, 2011.
[48] R. Li, J. C. Gao and K. Fan, “Study to microstructure and mechanical properties of Mg containing high entropy alloys”, Materials Science Forum, Vol. 650, pp. 265-271, 2010.
[49] K. M. Youssef, A. J. Zaddach, C. Niu, D. L. Irving and C. C. Koch, “A Novel Low-Density, High-Hardness, High-entropy Alloy with Close-packed Single-phase Nanocrystalline Structures”, Materials Research Letters, Vol. 3, pp. 95-99, 2014.
[50] X. J. Huang, J. Miao and A. A. Luo, “Lightweight AlCrTiV high-entropy alloys with dualphase microstructure via microalloying”, Journal of Materials Science, Vol. 54, pp. 2271-2277, 2019.
[51] O. N. Senkov, S. V. Senkova, C. Woodward and D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis”, Acta Materialia, Vol.61, pp.1545-1557, 2013.
[52] O. N. Senkov, S. V. Senkova, D. B. Miracle and C. Woodward, ”Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering, Vol. 565, pp. 51-62, 2013.
[53] N. D. Stepanov, N. Y. Yurchenko, D. G. Shaysultanov, G. A. Salishchev, and M. A. Tikhonovsky, “Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys”, Materials Science and Technology, Vol. 31, pp. 1184-1193, 2015.
[54] F. Otto, Y. Yang, H. Bei and E. P. George, “Relative effects of enthalpy and entropy on the phase stability of equiatomic high-entropy alloys”, Acta Materialia, Vol. 61, pp. 2628-2638, 2013.
[55] O. N. Senkov, J. D. Miller, D. B. Miracle and C. Woodward, “Accelerated exploration of multi-principal element alloys with solid solution phases”, NATURE COMMUNICATIONS, Vol. 6, pp. 1-10, 2015.
[56] R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw, “Design of Light-Weight High-Entropy Alloys”, Entropy, Vol. 18, p. 333, 2016.
[57] S. Ma, J. Procházka, P. Karvánková, Q. Ma, X. Niu, X. Wang, D. Ma, K. Xu and S. Vepřek, “Comparative study of the tribological behaviour of superhard nanocomposite coatings nc-TiN/a-Si3N4 with TiN”, Surface and Coatings Technology, Vol. 194, pp. 143-148, 2005.
[58] M. A. Amin, N. E. Bagoury, M. Saracoglu and M. Ramadan, “Electrochemical and Corrosion Behavior of cast Re-containing Inconel 718 Alloys in Sulphuric Acid Solutions and the Effect of Cl-”, International Journal of ELECTROCHEMICAL SCIENCE, Vol. 9, pp. 5352-5374, 2014.
[59] S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chen and B.L. Shen, “Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys”, Vacuum, Vol. 163, pp. 263-268, 2019.
|