參考文獻 |
1. Rual JF, Venkatesan K, Hao T, et al. Towards a proteome-scale map of the human protein-protein interaction network. Nature. 2005; 437(7062):1173-8.
2. Liang H1, Li WH. MicroRNA regulation of human protein protein interaction network. RNA. 2007; 13(9):1402-8.
3. Riley R, Lee C, Sabatti C, et al. Inferring protein domain interactions from databases of interacting proteins. Genome Biol. 2005; 6(10):R89.
4. Mishra GR, Suresh M, Kumaran K, et al. Human protein reference database--2006 update. Nucleic Acids Res. 2006; 34(Database issue):D411-4.
5. Bader GD, Betel D, Hogue CW. BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res. 2003; 31(1):248-50.
6. Mewes HW, Frishman D, Güldener U, et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 2002; 30(1):31-4.
7. Chatr-aryamontri A, Ceol A, Palazzi LM, et al. MINT: the Molecular INTeraction database. Nucleic Acids Res. 2007; 35(Database issue):D572-4.
8. Xenarios I, Salwínski L, Duan XJ, et al. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 2002; 30(1):303-5.
9. Hermjakob H, Montecchi-Palazzi L, Lewington C, et al. IntAct: an open source molecular interaction database. Nucleic Acids Res. 2004; 32(Database issue):D452-5. 10. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O′Donnell L, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2013, 41: D816-23.
11. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):215-33.
12. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 2007; 129(7):1401-14.
13. Hsu CW, Juan HF, Huang HC. Characterization of microRNA-regulated protein-protein interaction network. Proteomics. 2008; 8(10):1975-9.
14. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007; 171(3):728-38.
15. Zhang S, Jin G, Zhang XS, et al. Discovering functions and revealing mechanisms at molecular level from biological networks. Proteomics. 2007; 7(16):2856-69.
16. Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics. 2003; 33: 228–237.
17. Kann MG. Advances in translational bioinformatics: computational approaches for the hunting of disease genes. Brief Bioinform. 2010; 11: 96–110.
18. Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria. Trends Genet. 1999; 15: 267–272.
19. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and complex traits. Nat Rev Genet. 2005; 6: 95–108.
20. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev. Genet. 201; 12(1): 56-68.
21. Goh KI, Cusick ME, Valle D, et al. The human disease network. Proc Natl Acad Sci U S A. 2007; 104(21): 8685-90.
22. Lee DS, Park J, Kay KA, et al. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A. 2008; 105(29): 9880-5.
23. Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008; 18(4): 644-52.
24. Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell. 2006; 125(4): 801-14.
25. Lee R, Karr JR, Covert MW. WholeCellViz: data visualization for whole-cell models. BMC Bioinformatics. 2013; 14:253.
26. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003; 13(11):2498-504.
27. Bhagat J, Tanoh F, Nzuobontane E, et al. BioCatalogue: a universal catalogue of web services for the life sciences. Nucleic Acids Res. 2010; 38(Web Server issue):W689-94.
28. Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 2014, 42: D1070-4.
29. Vlachos IS, Paraskevopoulou MD, Karagkouni D, Georgakilas G, Vergoulis T, Kanellos I, Anastasopoulos IL, Maniou S, Karathanou K, Kalfakakou D, et al. DIANA-TarBase v7.0: indexing more than half a million experimentally supported miRNA:mRNA interactions. Nucleic Acids Res. 2015, 43: D153-9.
30. NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018, 46(D1): D8-D13.
31. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017, 45(D1): D353D361.
32. Chen JS, Hung WS, Chan HH, Tsai SJ, Sun HS. In silico identification of oncogenic potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013, 29(4): 420-7.
33. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000, 25(1): 25-9.
34. Ng KL, Liu HC, Lee SC. ncRNAppi-a tool for identifying disease-related miRNA and siRNA targeting pathways. Bioinformatics. 2009, 25(23): 3199-201.
35. Ruepp A, Kowarsch A, Theis F. PhenomiR: microRNAs in human diseases and biological processes. Methods Mol Biol. 2012, 822: 249-60.
36. Das SS, Saha P, Chakravorty N. miRwayDB: a database for experimentally validated microRNA-pathway associations in pathophysiological conditions. Database (Oxford). 2018, 2018.
37. Backes C, Kehl T, Stöckel D, Fehlmann T, Schneider L, Meese E, Lenhof HP, Keller A. miRPathDB: a new dictionary on microRNAs and target pathways. Nucleic Acids Res. 2017, 45(D1): D90-D96.
38. Agarwal R, Kumar B, Jayadev M, Raghav D, Singh A. CoReCG: a comprehensive database of genes associated with colon-rectal cancer. Database (Oxford). 2016, 2016. 39. Kang MH, Moon SU, Sung JH, Kim JW, Lee KW, Lee HS, Lee JS, Kim JH. Antitumor Activity of HM781-36B, alone or in Combination with Chemotherapeutic Agents, in Colorectal Cancer Cells. Cancer Res Treat. 2016, 48(1): 355-64.
40. Sirvent A, Bénistant C, Pannequin J, Veracini L, Simon V, Bourgaux JF, Hollande F, Cruzalegui F, Roche S. Src family tyrosine kinases-driven colon cancer cell invasion is induced by Csk membrane delocalization. Oncogene. 2010, 29(9): 1303-15.
41. Jeong D, Kim H, Kim D, Ban S, Oh S, Ji S, Kang D, Lee H, Ahn TS, Kim HJ, et al. Protein kinase, membrane‑associated tyrosine/threonine 1 is associated with the progression of colorectal cancer. Oncol Rep. 2018, 39(6): 2829-2836.
42. Xie T, D′ Ario G, Lamb JR, Martin E, Wang K, Tejpar S, Delorenzi M, Bosman FT, Roth AD, Yan P, et al. A comprehensive characterization of genome-wide copy number aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS One. 2012, 7(7): e42001.
43. Wu S, Wu F, Jiang Z. Identification of hub genes, key miRNAs and potential molecular mechanisms of colorectal cancer. Oncol Rep. 2017, 38(4): 2043-2050.
44. Xiang Z, Wang S, Xiang Y. Up-regulated microRNA499a by hepatitis B virus induced hepatocellular carcinogenesis via targeting MAPK6. PLoS One. 2014, 9(10): e111410.
45. Masuda M, Yamada T. The emergence of TNIK as a therapeutic target for colorectal cancer. Expert Opin Ther Targets. 2017, 21(4): 353-355.
46. Ali RH, Marafie MJ, Bitar MS, Al-Dousari F, Ismael S, Bin Haider H, Al-Ali W, Jacob SP, Al-Mulla F. Gender-associated genomic differences in colorectal cancer: clinical insight from feminization of male cancer cells. Int J Mol Sci. 2014, 15(10): 17344-65.
47. Yun CW, Kim S, Lee JH, Lee SH. Melatonin Promotes Apoptosis of Colorectal Cancer Cells via Superoxide-mediated ER Stress by Inhibiting Cellular Prion Protein Expression. Anticancer Res. 2018, 38(7): 3951-3960.
48. Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol Chem. 2012, 287(51): 42739-50.
49. Zhang YJ, Dai Q, Sun DF, Xiong H, Tian XQ, Gao FH, Xu MH, Chen GQ, Han ZG, Fang JY. mTOR signaling pathway is a target for the treatment of colorectal cancer. Send to Ann Surg Oncol. 2009, 16(9): 2617-28.
50. Csukasi F, Duran I, Barad M, Barta T, Gudernova I, Trantirek L, Martin JH, Kuo CY, Woods J, Lee H, et al. The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling. Sci Transl Med. 2018, 10(459).
51. Rey C, Faustin B, Mahouche I, Ruggieri R, Brulard C, Ichas F, Soubeyran I, Lartigue L, De Giorgi F. The MAP3K ZAK, a novel modulator of ERK-dependent migration, is upregulated in colorectal cancer. Oncogene. 2016, 35(24): 3190-200.
52. Goyal P, Behring A, Kumar A, Siess W. Identifying and characterizing a novel protein kinase STK35L1 and deciphering its orthologs and close-homologs in vertebrates. PLoS One. 2009, 4(9): e6981.
53. Sabir SR, Sahota NK, Jones GD, Fry AM. Loss of Nek11 Prevents G2/M Arrest and Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA Damaging Agents. PLoS One. 2015, 10(10): e0140975.
54. Bjerrum JT, Nielsen OH, Riis LB, Pittet V, Mueller C, Rogler G, Olsen J. Transcriptional analysis of left-sided colitis, pancolitis, and ulcerative colitis-associated dysplasia. Inflamm Bowel Dis. 2014, 20(12): 2340-52.
55. Hanna DL, Loupakis F, Yang D, Cremolini C, Schirripa M, Li M, Matsusaka S, Berger MD, Miyamoto Y, Zhang W, , et al. Prognostic Value of ACVRL1 Expression in Metastatic Colorectal Cancer Patients Receiving First-line Chemotherapy With Bevacizumab: Results From the Triplet Plus Bevacizumab (TRIBE) Study. Clin Colorectal Cancer. 2018, 17(3): e471-e488.
56. Record CJ, Chaikuad A, Rellos P, Das S, Pike AC, Fedorov O, Marsden BD, Knapp S, Lee WH. Structural comparison of human mammalian ste20-like kinases. PLoS One. 2010, 5(8): e11905.
57. Zhou JK, Zheng YZ, Liu XS, Gou Q, Ma R, Guo CL, Croce CM, Liu L, Peng Y. ROR1 expression as a biomarker for predicting prognosis in patients with colorectal cancer. Oncotarget. 2017, 8(20): 32864-32872.
58. Gong H, Fang L, Li Y, Du J, Zhou B, Wang X, Zhou H, Gao L, Wang K, Zhang J. miR873 inhibits colorectal cancer cell proliferation by targeting TRAF5 and TAB1. Oncol Rep. 2018, 39(3): 1090-1098.
59. Yuan WC, Pepe-Mooney B, Galli GG, Dill MT, Huang HT, Hao M, Wang Y, Liang H, Calogero RA, Camargo FD. NUAK2 is a critical YAP target in liver cancer. Nat Commun. 2018, 9(1): 4834.
60. Kim ST, Ahn TJ, Lee E, Do IG, Lee SJ, Park SH, Park JO, Park YS, Lim HY, Kang WK, et al. Exploratory biomarker analysis for treatment response in KRAS wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan. BMC Cancer. 2015, 15: 747.
61. Li BQ, Huang T, Zhang J, Zhang N, Huang GH, Liu L, Cai YD. An ensemble prognostic model for colorectal cancer. Send to PLoS One. 2013, 8(5): e63494.
62. Guo H, Hu X, Ge S, Qian G, Zhang J. Regulation of RAP1B by miR-139 suppresses human colorectal carcinoma cell proliferation. Int J Biochem Cell Biol. 2012, 44(9): 1465-72.
63. Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D, Rao B. MicroRNA-100 regulates SW620 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 2014, 31(5): 2055-62.
64. Alonso MH, Aussó S, Lopez-Doriga A, Cordero D, Guinó E, Solé X, Barenys M, de Oca J, Capella G, Salazar R, Sanz-Pamplona R, Moreno V. Comprehensive analysis of copy number aberrations in microsatellite stable colon cancer in view of stromal component. Br J Cancer. 2017, 117(3): 421-431.
65. Qi L, Ding Y. TNK2 as a key drug target for the treatment of metastatic colorectal cancer. Int J Biol Macromol. 2018, 119: 48-52.
66. Jin DH, Lee J, Kim KM, Kim S, Kim DH, Park J. Overexpression of MAPK15 in gastric cancer is associated with copy number gain and contributes to the stability of c-Jun. Oncotarget. 2015, 6(24): 20190-203.
67. Akter K, Lanza EA, Martin SA, Myronyuk N, Rua M, Raffa RB. Diabetes mellitus and Alzheimer′s disease: shared pathology and treatment? Br J Clin Pharmacol. 2011, 71(3): 365-76.
68. Reed B, Villeneuve S, Mack W, DeCarli C, Chui HC, Jagust W. Associations between serum cholesterol levels and cerebral amyloidosis. JAMA Neurol. 2014, 71(2): 195-200.
69. Basu R, Chandramouli V, Dicke B, Landau B, Rizza R. Obesity and type 2 diabetes impair insulin-induced suppression of glycogenolysis as well as gluconeogenesis. Diabetes. 2005, 54(7): 1942-8.
70. Rönnemaa E, Zethelius B, Sundelöf J, Sundström J, Degerman-Gunnarsson M, Berne C, Lannfelt L, Kilander L. Impaired insulin secretion increases the risk of Alzheimer disease. Neurology. 2008, 71(14): 1065-71.
71. Kivipelto M, Ngandu T, Fratiglioni L, Viitanen M, Kåreholt I, Winblad B, Helkala EL, Tuomilehto J, Soininen H, Nissinen A. Obesity and vascular risk factors at midlife and the risk of dementia and Alzheimer disease. Arch Neurol. 2005, 62(10): 1556-60.
72. Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM. Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer′s disease. J Alzheimer’s Dis. 2006, 9(1): 13-33.
73. Abner EL, Nelson PT, Kryscio RJ, Schmitt FA, Fardo DW, Woltjer RL, et al. Diabetes is associated with cerebrovascular but not Alzheimer neuropathology. Alzheimers Dement. 2016, 12(8): 882–889.
74. Ahmed F, Ansari JA, Ansari ZE, Alam Q, Gan SH, Kamal MA, Ahmad E. A molecular bridge: connecting type 2 diabetes and Alzheimer′s disease. CNS Neurol Disord Drug Targets. 2014, 13(2): 312-21.
75. Love JE, Hayden EJ, Rohn TT. Alternative splicing in Alzheimer′s Disease. J Parkinsons Dis Alzheimers Dis. 2015, 2(2): 6.
76. Dlamini Z, Mokoena F, Hull R. Abnormalities in alternative splicing in diabetes: therapeutic targets. J Mol Endocrinol. 2017, 59(2): R93-R107.
77. Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007,39(1): 17-23.
78. Sun J, Feng X, Liang D, Duan Y, Lei H. Down-regulation of energy metabolism in Alzheimer′s disease is a protective response of neurons to the microenvironment. J Alzheimers Dis. 2012, 28(2): 389-402.
79. Bai Z, Han G, Xie B, Wang J, Song F, Peng X, Lei H. AlzBase: an integrative database for gene dysregulation in Alzheimer’s disease. Mol Neurobiol. 2016, 53(1): 310-319.
80. Dai HJ, Wu JC, Tsai RT, Pan WH, Hsu WL. T-HOD: a literature-based candidate gene database for hypertension, obesity and diabetes. Database (Oxford). 2013, 2013: bas061.
81. Postula M, Janicki PK, Rosiak M, Eyileten C, Zaremba M, Kaplon-Cieslicka A, Sugino S, Kosior DA, Opolski G, Filipiak KJ, Mirowska-Guzel D. Targeted deep resequencing of ALOX5 and ALOX5AP in patients with diabetes and association of rare variants with leukotriene pathways. Exp Ther Med. 2016, 12(1): 415-421.
82. Nejatian N, Penna-Martinez M, Steinhilber D, Badenhoop K. The association between vitamin D and the arachidonate 5-lipoxygenase (ALOX-5) gene polymorphism in type 2 diabetes. Diabetologie und Stoffwechsel. 2015, 10-P205.
83. Heemskerk MM, Giera M, Bouazzaoui FE, Lips MA, Pijl H, van Dijk KW, van Harmelen V. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes. Nutrients. 2015, 7(9): 7676-90.
84. Greenbaum L, Ravona-Springer R, Lubitz I, Schmeidler J, Cooper I, Sano M, Silverman JM, Heymann A, Beeri MS. Potential contribution of the Alzheimer′s disease risk locus BIN1 to episodic memory performance in cognitively normal Type 2 diabetes elderly. Eur Neuropsychopharmacol. 2016, 26(4): 787-95.
85. Horn S, Kirkegaard JS, Hoelper S, Seymour PA, Rescan C, Nielsen JH, Madsen OD, Jensen JN, Krüger M, Grønborg M, Ahnfelt-Rønne J. Research Resource: A Dual Proteomic Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol Endocrinol. 2016, 30(1): 133-43.
86. Wu DA, Bu X, Warden CH, Shen DD, Jeng CY, Sheu WH, Fuh MM, Katsuya T, Dzau VJ, Reaven GM, et al. Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest. 1996, 97(9): 2111-8.
87. Celikbilek A, Tanik N, Sabah S, Borekci E, Akyol L, Ak H, Adam M, Suher M, Yilmaz N. Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral neuropathy. Mol Biol Rep. 2014, 41(6): 4017-22.
88. Verma SK, Deshmukh V, Liu P, Nutter CA, Espejo R, Hung ML, Wang GS, Yeo GW, Kuyumcu-Martinez MN. Reactivation of fetal splicing programs in diabetic hearts is mediated by protein kinase C signaling. J Biol Chem. 2013, 288(49): 35372-86.
89. Belanger K, Nutter CA, Li J, Tasnim S, Liu P, Yu P, Kuyumcu-Martinez MN. CELF1 contributes to aberrant alternative splicing patterns in the type 1 diabetic heart. Biochem Biophys Res Commun. 2018, 503(4): 3205-3211.
90. Blom ES, Wang Y, Skoglund L, Hansson AC, Ubaldi M, Lourdusamy A, Sommer WH, Mielke M, Hyman BT, Heilig M, et al. Increased mRNA Levels of TCF7L2 and MYC of the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer′s Disease Brain. Int J Alzheimers Dis. 2010, 2011: 936580.
91. Včelák J, Vejražková D, Vaňková M, Lukášová P, Bradnová O, Hálková T, Bešťák J, Andělová K, Kvasničková H, Hoskovcová P, et al. T2D risk haplotypes of the TCF7L2 gene in the Czech population sample: the association with free fatty acids composition. Physiol Res. 2012, 61(3): 229-40.
92. Arefin AS, Mathieson L, Johnstone D, Berretta R, Moscato P. Unveiling clusters of RNA transcript pairs associated with markers of Alzheimer′s disease progression. PLoS One. 2012, 7(9): e45535.
93. Riise J, Plath N, Pakkenberg B, Parachikova A. Aberrant Wnt signaling pathway in medial temporal lobe structures of Alzheimer′s disease. J Neural Transm (Vienna). 2015, 122(9): 1303-18.
94. Vollbach H, Heun R, Morris CM, Edwardson JA, McKeith IG, Jessen F, Schulz A, Maier W, Kölsch H. APOA1 polymorphism influences risk for early-onset nonfamiliar AD. Ann Neurol. 2005, 58(3): 436-41.
95. RRaygani AV, Rahimi Z, Kharazi H, Tavilani H, Pourmotabbed T. Association between apolipoprotein E polymorphism and serum lipid and apolipoprotein levels with Alzheimer′s disease. Neurosci Lett. 2006, 408(1): 68-72.
96. Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is associated with risk of Alzheimer′s disease. Drug Des Devel Ther. 2015, 9: 5421-31.
97. Pallàs M, Verdaguer E, Jordà EG, Jiménez A, Canudas AM, Camins A. Flavopiridol: an antitumor drug with potential application in the treatment of neurodegenerative diseases. Med Hypotheses. 2005, 64(1): 120-3.
98. Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G, Ransmayr G, Beckmann H, et al. Decreased catalase activity but unchanged superoxide dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem. 1995, 64(3): 1216-23.
99. Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acidreactive substances and antioxidant enzyme activity in the brain in Alzheimer′s disease. Neurology. 1995, 45(8): 1594-601.
100. Kim TH, Hong JM, Oh B, Cho YS, Lee JY, Kim HL, Shin ES, Lee JE, Park EK, Kim SY. Genetic association study of polymorphisms in the catalase gene with the risk of osteonecrosis of the femoral head in the Korean population. Osteoarthritis Cartilage. 2008, 16(9): 1060-6.
101. Mizwicki MT, Liu G, Fiala M, Magpantay L, Sayre J, Siani A, Mahanian M, Weitzman R, Hayden EY, Rosenthal MJ, et al. 1α,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-β phagocytosis and inflammation in Alzheimer′s disease patients. J Alzheimers Dis. 2013, 34(1): 155-70.
102. Cifuentes RA, Murillo-Rojas J. Alzheimer′s disease and HLA-A2: linking neurodegenerative to immune processes through an in silico approach. Biomed Res Int. 2014, 2014: 791238.
103. Yang J, Li S, He XB, Cheng C, Le W. Induced pluripotent stem cells in Alzheimer’s disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener. 2016, 11(1): 39.
104. Xinzhong Li, Jintao Long, Taigang He, Robert Belshaw, and James Scott. Integrated genomic approaches identify major pathways and upstream regulators in late onset Alzheimer’s disease. Sci Rep. 2015, 5: 12393.
105. Engidawork E, Gulesserian T, Yoo BC, Cairns N, Lubec G. Alteration of caspases and apoptosis-related proteins in brains of patients with Alzheimer′s disease. Biochem Biophys Res Commun. 2001, 281(1): 84-93.
106. Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000 Nov;157(5):1415-30.
107. Gopalraj RK, Zhu H, Kelly JF, Mendiondo M, Pulliam JF, Bennett DA, Estus S. Genetic association of low density lipoprotein receptor and Alzheimer′s disease. Neurobiol Aging. 2005, 26(1): 1-7.
108. Bowen RL, Isley JP, Atkinson RL. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J Neuroendocrinol. 2000, 12(4): 351-4.
109. Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer′s disease and other tauopathies. Acta Neuropathol. 2011, 121(3): 337-49.
110. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N. Leptin regulates tau phosphorylation and amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun. 2009, 380(1): 98-104.
111. Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein kinase: a potential player in Alzheimer′s disease. J Neurochem. 2011, 118(4): 460-74.
112. Semagacestat | Alzforum. Retrieved April 8, 2019, from https://www.alzforum.org/therapeutics/semagacestat.
113. Verubecestat | Alzforum. Retrieved April 8, 2019, from https://www.alzforum.org/therapeutics/verubecestat.
114. Atabecestat | Alzforum. Retrieved April 8, 2019, from https://www.alzforum.org/therapeutics/atabecestat.
115. Chang Y, Paramasivam M, Girgenti MJ, Walikonis RS, Bianchi E, LoTurco JJ. RanBPM regulates the progression of neuronal precursors through M-phase at the surface of the neocortical ventricular zone. Dev Neurobiol. 2010, 70(1): 1-15.
116. Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A, Sekiguchi KJ, O′Shea CC, et al. Phosphatidylserine Exposure Controls Viral Innate Immune Responses by Microglia. Neuron. 2017, 93(3): 574-586.e8.
117. Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010, 3(8): 775-81. |