參考文獻 |
[1] J. M.Raimond, M.Brune, Q.Computation, F.DeMartini, andC.Monroe, “Electric Field Effect in Atomically Thin Carbon Films,” vol. 306, no. October, pp. 666–670, 2004.
[2] L.Banszerus, M.Schmitz, S.Engels, J.Dauber, M.Oellers, andP.Gr, “Ultra-high mobility graphene devices from chemical vapor deposition on reusable copper,” Science (80-. )., no. July, pp. 1–12, 2015.
[3] K. I.Bolotin et al., “Ultrahigh electron mobility in suspended graphene,” vol. 146, pp. 351–355, 2008.
[4] Z. D.Sha et al., “nanoindentation,” no. 1, pp. 1–6, 2014.
[5] B.Yang et al., “RSC Advances,” no. Md, pp. 54677–54683, 2014.
[6] G.Lee et al., “REPORTS High-Strength Chemical-Vapor – Deposited Graphene and Grain Boundaries,” vol. 340, no. May, pp. 1073–1077, 2013.
[7] O.Uni, “Aqueous Suspension and Characterization of Chemically Modified Graphene Sheets,” no. 14, pp. 6592–6594, 2008.
[8] F.Bonaccorso, Z.Sun, T.Hasan, andA. C.Ferrari, “Graphene photonics and optoelectronics,” vol. 4, no. September, pp. 611–622, 2010.
[9] X.Wang, L.Zhi, andK.Mu, “Transparent , Conductive Graphene Electrodes for Dye-Sensitized Solar Cells,” 2008.
[10] Y.Zhang, P.Kim, M. Y.Han, andO.Barbaros, “Energy Band-Gap Engineering of Graphene Nanoribbons,” vol. 206805, no. MAY, pp. 1–4, 2007.
[11] I.Meric, M. Y.Han, A. F.Young, B.Ozyilmaz, P.Kim, andK. L.Shepard, “Current saturation in zero-bandgap , top- gated graphene field-effect transistors,” vol. 3, no. November, 2008.
[12] A.Ramasubramaniam, D.Naveh, andE.Towe, “Tunable band gaps in bilayer transition-metal dichalcogenides,” vol. 205325, pp. 1–10, 2011.
[13] D. H.Keum et al., “Bandgap opening in few-layered monoclinic MoTe 2,” vol. 11, no. June, pp. 4–9, 2015.
[14] M.Mos et al., “Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS 2,” pp. 4–9, 2016.
[15] M.Kang et al., “Universal Mechanism of Band-Gap Engineering in Transition-Metal Dichalcogenides,” 2017.
[16] K.Watanabe, T.Taniguchi, andH.Kanda, “G 404 © 200 4,” vol. 3, no. June, 2004.
[17] V. L.Solozhenko, A. G.Lazarenko, J.Petitet, andA.VKanaev, “Bandgap energy of graphite-like hexagonal boron nitride,” vol. 62, pp. 1331–1334, 2001.
[18] J.Yin et al., “Boron Nitride Nanostructures: Fabrication, Functionalization and Applications,” Small, vol. 12, no. 22, pp. 2942–2968, 2016.
[19] P. R.Kidambi et al., “In Situ Observations during Chemical Vapor Deposition of Hexagonal Boron Nitride on Polycrystalline Copper,” Chem. Mater., vol. 26, no. 22, pp. 6380–6392, 2014.
[20] L. H.Li, Y.Chen, G.Behan, H.Zhang, M.Petravic, andA. M.Glushenkov, “Large-scale mechanical peeling of boron nitride nanosheets by low-energy ball milling,” J. Mater. Chem., vol. 21, no. 32, pp. 11862–11866, 2011.
[21] C. R.Dean et al., “Boron nitride substrates for high-quality graphene electronics,” Nat. Nanotechnol., vol. 5, no. 10, pp. 722–726, 2010.
[22] J.Shen, Y.He, J.Wu, C.Gao, K.Keyshar, andX.Zhang, “Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components,” 2015.
[23] J. N.Coleman et al., “Produced by Liquid Exfoliation of Layered Materials,” Science (80-. )., vol. 331, no. 6017, pp. 568–571, 2011.
[24] J. M.Chem, Y.Wang, Z.Shi, andJ.Yin, “their composites with polybenzimidazole,” pp. 11371–11377, 2011.
[25] G. R.Bhimanapati andJ. A.Robinson, “hexagonal boron nitride nanosheets †,” no. 002, pp. 11671–11675, 2014.
[26] B.Nitride et al., “‘White Graphenes’: Boron Nitride Nanoribbons via Boron Nitride Nanotube Unwrapping,” pp. 5049–5055, 2010.
[27] K. J.Erickson et al., “Longitudinal Splitting of Boron Nitride Nanotubes for the Facile Synthesis of High Quality Boron Nitride Nanoribbons,” pp. 3221–3226, 2011.
[28] Y.Stehle et al., “Synthesis of Hexagonal Boron Nitride Monolayer: Control of Nucleation and Crystal Morphology,” Chem. Mater., vol. 27, no. 23, pp. 8041–8047, 2015.
[29] R. M.Jacobberger andM. S.Arnold, “Graphene Growth Dynamics on Epitaxial Copper Thin Films,” 2013.
[30] Y.Liu, S.Bhowmick, andB. I.Yakobson, “BN white graphene with ‘colorful’ edges: The energies and morphology,” Nano Lett., vol. 11, no. 8, pp. 3113–3116, 2011.
[31] K. K.Kim et al., “Synthesis of Monolayer Boron Nitride on Cu Foil Using Chemical Vapor Deposition,” Nano Lett., vol. xx, p. xx, 2011.
[32] W.Auwa, H. U.Suter, H.Sachdev, andT.Greber, “Synthesis of One Monolayer of Hexagonal Boron Nitride on Ni ( 111 ) from B-Trichloroborazine ( ClBNH ) 3,” no. 111, pp. 343–345, 2004.
[33] Z.Zhang, Y.Liu, Y.Yang, andB. I.Yakobson, “Growth Mechanism and Morphology of Hexagonal Boron Nitride,” Nano Lett., vol. 16, no. 2, pp. 1398–1403, 2016.
[34] L.Liu et al., “Unusual role of epilayer – substrate interactions in determining orientational relations in van der Waals epitaxy,” 2014.
[35] X.Song et al., “Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation,” Nano Res., vol. 8, no. 10, pp. 3164–3176, 2015.
[36] J.Yin et al., “Aligned Growth of Hexagonal Boron Nitride Monolayer on Germanium,” no. 40, pp. 5375–5380, 2015.
[37] J.Li et al., “Growth of Polar Hexagonal Boron Nitride Monolayer on Nonpolar Copper with Unique Orientation,” pp. 1–6, 2016.
[38] R.VGorbachev et al., “Hunting for Monolayer Boron Nitride : Optical and Raman Signatures,” no. 4, pp. 465–468, 2011.
[39] R. M.Martin, “No Title,” 1981.
[40] I.Vlassiouk et al., “Role of hydrogen in chemical vapor deposition growth of large single-crystal graphene,” ACS Nano, vol. 5, no. 7, pp. 6069–6076, 2011.
[41] S.Sharma, G.Kalita, R.Vishwakarma, Z.Zulkifli, andM.Tanemura, “Opening of triangular hole in triangular-shaped chemical vapor deposited hexagonal boron nitride crystal,” Sci. Rep., vol. 5, no. May, pp. 1–9, 2015.
[42] Y. Y.Stehle et al., “Anisotropic Etching of Hexagonal Boron Nitride and Graphene: Question of Edge Terminations,” Nano Lett., vol. 17, no. 12, pp. 7306–7314, 2017. |