博碩士論文 106222029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:18.116.50.244
姓名 黃岱珩(Dai-Heng Huang)  查詢紙本館藏   畢業系所 物理學系
論文名稱 水平視線圖方法於非線性動力學系統之不可逆過程探討
(Studies on irreversible process in some non-linear dynamical systems using the Horizontal Visibility Graph approach)
相關論文
★ Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits★ 二維非彈性顆粒子之簇集現象
★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究★ 顆粒體複雜流動之研究
★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究★ 帶電高分子吸附在帶電的表面上之研究
★ 自我纏繞繩節高分子之物理★ 高分子鏈在強拉伸流場下之研究
★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為★ 最佳化網路成長模型的理論研究
★ 高分子鏈在交流電場或流場下的行為★ 驟放式發火神經元的數值模擬
★ DNA在微通道的熱泳行為★ 皮膚細胞增生與腫瘤生長之模擬
★ 耦合在非線性系統中的影響:模型探討以及非線性分析★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,視線演算法( visibility algorithm)已被用在許多非線性科學的領域,因其可將序列內部的關聯轉成對應的網路結構。而藉由指向性的水平視線演算法( directed horizontal visibility algorithm),時間序列可被轉成指向性的網路結構,使得往「未來」與「過去」的分布可被測量;並提議以 Kullback-Leibler 散度值度量兩個分布的差異,作為量化不可逆性的指標。

本文旨在利用指向性水平視線演算法,研究非線性動力學與混沌系統的不可逆性,包括 Tent map 和 Logistic map。

隨著混沌系統的參數增加,系統整體而言越來越不可逆。在 Tent map 中,散度值的變化隨著不同週期帶呈現碎形特徵,且平均散度值隨著週期帶合併而倍增;在 Logistic map 中,則以週期窗口表現碎形特徵,並且在全混沌帶內週期窗口會以 $[RL^{alpha}R^{infty},RL^{alpha+1}R^{infty}]$ 為區間顯現對稱性。

最後,由於在參數首次進入混沌前的倍週期區間,水平視線演算法是無法分辨不可逆性的,促使我們將差值的因素放入演算法中( modified-Horizontal Visibility graph ),使得前述的倍週期不可逆性可以顯現,但差值的效果卻也破壞了原本演算法所顯現的碎形特徵。
摘要(英) In recent years, the so-called visibility algorithm has been used in many areas in nonlinear sciences by capturing the correlations of the time series through constructing the corresponding network. Using the directed horizontal visibility algorithm, the time-series can be mapped to a directed network system, and the in-degree and out-degree distributions can be calculated, and it is proposed that the irreversibility of the dynamics can be measured quantitatively by the Kullback-Leibler divergences of these degree distributions.

Here, by using the directed horizontal visibility graph, we focus on the irreversible dynamics of several nonlinear dynamical and chaotic systems, including the Tent map and the Logistic map.

With the increasing of the relevant parameter in the chaotic system, the dynamics globally become more and more irreversible. For the Tent map, we observe that the divergence value doubling in each band′s merging point shows a fractal structure. In the Logistic map, the fractal features demonstrated by the intermittency can reveal the symmetric structure between interval $[RL^{alpha}R^{infty},RL^{alpha+1}R^{infty}]$ inside the fully chaotic band.

Furthermore, we found that the horizontal visibility algorithm fails to identify the irreversibility of the period-doubling region before the relevant parameter is varied into the chaotic regime for the Logistic map, we thus propose a modified-Horizontal Visibility Graph method, which then can reveal the irreversibility for these periodic dynamics, but the associated fractal structure from the former algorithm will be destroyed.
關鍵字(中) ★ 非線性
★ 水平視線圖
★ Kullback-Leibler散度
★ Lyapunov 指數
關鍵字(英) ★ non-linear
★ Horizontal Visibility Graph
★ Kullback-Leibler divergence
★ Lyapunov exponent
論文目次 1 緒論

1.1熱力學第二定律的近況.......................... 1
1.1.1 非平衡態的假設 ......................... 1
1.1.2 非平衡態之熵變化 ........................ 2
1.2視線演算法................................ 4
1.3不可逆性 ................................. 4
1.4非線性動力學............................... 5
1.4.1 不動點與週期運動 ........................ 5
1.4.2 週期帶運動............................ 5
2 模擬與方法 6
2.1 模擬對象——非線性系統 ........................ 6
2.1.1 Logisticmap ........................... 6
2.1.2 Tentmap ............................. 8
2.2 測量方法 ................................. 11
2.2.1 Directed-Horizontal Visibility Graph(DHVG) . . . . . . . . 11
2.2.2 Kullback-Leibler散度 ...................... 13
2.2.3 Jensen-Shannon散度....................... 14
2.3 DHVG在隨機系統中的結果....................... 15
2.3.1 無相關均勻分布(白噪音)—Uncorrelated Uniform Distribu-
tion ................................ 15
2.3.2 不偏隨機漫步(平衡態離散布朗運動)—Unbiased Random Walks 17
2.3.3 有偏隨機漫步(非平衡離散布朗運動)—Biased Random Walks 17
2.3.4 Logisticmap與Tentmap的全混沌 .............. 20
3 研究結果
3.1 DHVG在非平衡離散布朗運動的其他測量............... 24
3.2 DHVG在Tentmap的測量....................... 28
3.2.1 Tentmap的週期帶與帶合併點 ................. 28
3.2.2 帶合併點的Kullback-Leibler散度 ............... 29
3.2.3 不可逆量隨分歧增加的遞減性.................. 35
3.3 DHVG在Logisticmap的測量 ..................... 39
3.3.1 倍週期的Kullback-Leibler散度................. 39
3.3.2 單峰映射中的普適序列 ..................... 40
3.3.3 Logisticmap的帶合併點 .................... 52
3.4 modified-Directed Horizontal Visibility Graph (m-DHVG) 的測量 . . 59
3.4.1 m-DHVG在白噪音中的測試 .................. 60
3.4.2 m-DHVG在週期–4的結果 ................... 62
3.4.3 m-DHVG在Logisticmap中的結果 .............. 64
3.4.4 m-DHVG在Tentmap中的結果 ................ 67
4 總結與討論 73
4.1 DHVG與非平衡系統........................... 73
4.2 DHVG與混沌系統............................ 73
4.3 m-DHVG與混沌系統 .......................... 74
4.4 未來展望 ................................. 76
參考文獻 ................................. 78
參考文獻 [1] C. Jarzynski, “Nonequilibrium equality for free energy differences,” Physical Re- view Letters, vol. 78, no. 14, p. 2690, 1997.
[2] G.E.Crooks,“Nonequilibriummeasurementsoffreeenergydifferencesformicro- scopically reversible markovian systems,” Journal of Statistical Physics, vol. 90, no. 5-6, pp. 1481–1487, 1998.
[3] J. M. Parrondo, C. Van den Broeck, and R. Kawai, “Entropy production and the arrow of time,” New Journal of Physics, vol. 11, no. 7, p. 073008, 2009.
[4] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons, 2012.
[5] L. Lacasa and R. Toral, “Description of stochastic and chaotic series using visi- bility graphs,” Physical Review E, vol. 82, no. 3, p. 036120, 2010.
[6] B. Luque, L. Lacasa, F. J. Ballesteros, and A. Robledo, “Analytical properties of horizontal visibility graphs in the feigenbaum scenario,” Chaos: An Interdis- ciplinary Journal of Nonlinear Science, vol. 22, no. 1, p. 013109, 2012.
[7] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuno, “From time series to complex networks: The visibility graph,” Proceedings of the National Academy of Sciences, vol. 105, no. 13, pp. 4972–4975, 2008.
[8] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, “Horizontal visibility graphs: Exact results for random time series,” Physical Review E, vol. 80, no. 4, p. 046103, 2009.
[9] W. Jiang, B. Wei, Y. Tang, and D. Zhou, “Ordered visibility graph average aggregation operator: An application in produced water management,” Chaos: An Interdisciplinary Journal of Nonlinear Science, vol. 27, no. 2, p. 023117, 2017.
[10] L. Lacasa and R. Flanagan, “Time reversibility from visibility graphs of nonsta- tionary processes,” Physical Review E, vol. 92, no. 2, p. 022817, 2015.
[11] L. Lacasa, A. Nunez, É. Roldán, J. M. Parrondo, and B. Luque, “Time series irreversibility: a visibility graph approach,” The European Physical Journal B, vol. 85, no. 6, p. 217, 2012.
[12] G. Weiss, “Time-reversibility of linear stochastic processes,” Journal of Applied Probability, vol. 12, no. 4, pp. 831–836, 1975.
[13] S. Großmann and S. Thomae, “Invariant distributions and stationary correlation functions of one-dimensional discrete processes,” Zeitschrift für Naturforschung a, vol. 32, no. 12, pp. 1353–1363, 1977.
[14] E. N. Lorenz, “Noisy periodicity and reverse bifurcation,” Annals of the New York Academy of Sciences, vol. 357, no. 1, pp. 282–291, 1980.
[15] M. CRAMPIN and B. Heal, “On the chaotic behaviour of the tent map,” Teach- ing Mathematics and its Applications: An International Journal of the IMA, vol. 13, no. 2, pp. 83–89, 1994.
[16] N. Metropolis, M. Stein, and P. Stein, “On finite limit sets for transformations on the unit interval,” Journal of Combinatorial Theory, Series A, vol. 15, no. 1, pp. 25–44, 1973.
[17] B. Huberman and J. Rudnick, “Scaling behavior of chaotic flows,” Physical review letters, vol. 45, no. 3, p. 154, 1980.
[18] J. P. Crutchfield, J. D. Farmer, and B. A. Huberman, “Fluctuations and simple chaotic dynamics,” Physics Reports, vol. 92, no. 2, pp. 45–82, 1982.
[19] S.-i. Amari, Information geometry and its applications. Springer, 2016, vol. 194.
[20] J. Lin, “Divergence measures based on the shannon entropy,” IEEE Transactions on Information theory, vol. 37, no. 1, pp. 145–151, 1991.
[21] S. N. Rasband, Chaotic dynamics of nonlinear systems. Courier Dover Publi- cations, 2015.
[22] É. Roldán and J. M. Parrondo, “Estimating dissipation from single stationary trajectories,” Physical review letters, vol. 105, no. 15, p. 150607, 2010.
[23] A. Braga, L. Alves, L. Costa, A. Ribeiro, M. de Jesus, A. Tateishi, and H. Ribeiro, “Characterization of river flow fluctuations via horizontal visibility graphs,” Physica A: Statistical Mechanics and its Applications, vol. 444, pp. 1003–1011, 2016.
[24] F. Serinaldi and C. G. Kilsby, “Irreversibility and complex network behavior of stream flow fluctuations,” Physica A: Statistical Mechanics and its Applications, vol. 450, pp. 585–600, 2016.
[25] V. Botella-Soler, J. Castelo, J. Oteo, and J. Ros, “Bifurcations in the lozi map,” Journal of Physics A: Mathematical and Theoretical, vol. 44, no. 30, p. 305101, 2011.
[26] M. Hénon, “A two-dimensional mapping with a strange attractor,” in The Theory of Chaotic Attractors. Springer, 1976, pp. 94–102.
[27] J. Heagy, “A physical interpretation of the hénon map,” Physica D: Nonlinear Phenomena, vol. 57, no. 3-4, pp. 436–446, 1992.
[28] H. Wen, “A review of the hénon map and its physical interpretations,” Sch. Phys. Georg. Inst. Technol. Atlanta, GA 30332–0430, pp. 1–9, 2014.
指導教授 黎璧賢 審核日期 2019-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明