參考文獻 |
[1] D. Duan, H. Yu, H. Xie, and T. Cui, “Ab initio approach and its impact on superconductivity,” Journal of Superconductivity and Novel Magnetism, vol. 32, no. 1, pp. 53–60,2019.
[2] H. Kamerlingh Onnes, “The resistance of pure mercury at helium temperatures,” Commun. Phys. Lab. Univ. Leiden, b, vol. 120, 1911.
[3] W. Meissner and R. Ochsenfeld, “Ein neuer effekt bei eintritt der supraleitfähigkeit,”
Naturwissenschaften, vol. 21, no. 44, pp. 787–788, 1933.
[4] L. Boeri and G. B. Bachelet, “the road to room-temperature conventional superconductivity,” Journal of Physics: Condensed Matter, 2019.
[5] M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang,
Y. Q. Wang, and C. W. Chu, “Superconductivity at 93 k in a new mixed-phase y-ba-cu-o
compound system at ambient pressure,” Phys. Rev. Lett., vol. 58, pp. 908–910, Mar 1987.
[6] A. Drozdov, P. Kong, V. Minkov, S. Besedin, M. Kuzovnikov, S. Mozaffari, L. Balicas,
F. Balakirev, D. Graf, V. Prakapenka, et al., “Superconductivity at 250 k in lanthanum
hydride under high pressures,” Nature, vol. 569, no. 7757, p. 528, 2019.
[7] M. Somayazulu, M. Ahart, A. K. Mishra, Z. M. Geballe, M. Baldini, Y. Meng, V. V.
Struzhkin, and R. J. Hemley, “Evidence for superconductivity above 260 k in lanthanum
superhydride at megabar pressures,” Phys. Rev. Lett., vol. 122, p. 027001, Jan 2019.
[8] H. Liu, I. I. Naumov, R. Hoffmann, N. Ashcroft, and R. J. Hemley, “Potential high-tc
superconducting lanthanum and yttrium hydrides at high pressure,” Proceedings of the
National Academy of Sciences, vol. 114, no. 27, pp. 6990–6995, 2017.
[9] F. Peng, Y. Sun, C. J. Pickard, R. J. Needs, Q. Wu, and Y. Ma, “Hydrogen clathrate
structures in rare earth hydrides at high pressures: Possible route to room-temperature
superconductivity,” Physical review letters, vol. 119, no. 10, p. 107001, 2017.
[10] D. Duan, Y. Liu, F. Tian, D. Li, X. Huang, Z. Zhao, H. Yu, B. Liu, W. Tian, and T. Cui,
“Pressure-induced metallization of dense (h 2 s) 2 h 2 with high-t c superconductivity,”
Scientific reports, vol. 4, p. 6968, 2014.
[11] A. Drozdov, M. Eremets, I. Troyan, V. Ksenofontov, and S. Shylin, “Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system,” Nature, vol. 525,
no. 7567, p. 73, 2015.
[12] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Physical
review, vol. 108, no. 5, p. 1175, 1957.
[13] G. Eliashberg, “Interactions between electrons and lattice vibrations in a superconductor,”
Sov. Phys. JETP, vol. 11, no. 3, pp. 696–702, 1960.
[14] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid,
and M. G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical
architectures,” Nature, vol. 489, no. 7416, p. 414, 2012.
[15] J. He and T. M. Tritt, “Advances in thermoelectric materials research: Looking back and
moving forward,” Science, vol. 357, no. 6358, p. eaak9997, 2017.
[16] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid,
and M. G. Kanatzidis, “Ultralow thermal conductivity and high thermoelectric figure of
merit in snse crystals,” Nature, vol. 508, no. 7496, p. 373, 2014.
[17] M. Jin, Z. Chen, X. Tan, H. Shao, G. Liu, H. Hu, J. Xu, B. Yu, H. Shen, J. Xu, et al.,
“Charge transport in thermoelectric snse single crystals,” ACS Energy Letters, vol. 3,
no. 3, pp. 689–694, 2018.
[18] B. Saparov and D. B. Mitzi, “Organic–inorganic perovskites: structural versatility for
functional materials design,” Chemical reviews, vol. 116, no. 7, pp. 4558–4596, 2016.
[19] K. Frohna, T. Deshpande, J. Harter, W. Peng, B. A. Barker, J. B. Neaton, S. G. Louie,
O. M. Bakr, D. Hsieh, and M. Bernardi, “Inversion symmetry and bulk rashba effect in
methylammonium lead iodide perovskite single crystals,” Nature communications, vol. 9,
no. 1, p. 1829, 2018.
[20] R. Ohmann, L. K. Ono, H.-S. Kim, H. Lin, M. V. Lee, Y. Li, N.-G. Park, and Y. Qi,
“Real-space imaging of the atomic structure of organic–inorganic perovskite,” Journal of
the American Chemical Society, vol. 137, no. 51, pp. 16049–16054, 2015.
[21] P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, pp. B864–
B871, Nov 1964.
[22] W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation
effects,” Phys. Rev., vol. 140, no. 4A, p. A1133, 1965.
[23] D. M. Ceperley and B. J. Alder, “Ground state of the electron gas by a stochastic method,”
Phys. Rev. Lett., vol. 45, pp. 566–569, Aug 1980.
[24] J. P. Perdew and A. Zunger, “Self-interaction correction to density-functional approximations for many-electron systems,” Phys. Rev. B, vol. 23, no. 10, p. 5048, 1981.
[25] J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made
simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
[26] A. D. Becke, “Density-functional exchange-energy approximation with correct asymptotic
behavior,” Physical review A, vol. 38, no. 6, p. 3098, 1988.
[27] L. Ortenzi, I. Mazin, P. Blaha, and L. Boeri, “Accounting for spin fluctuations beyond
local spin density approximation in the density functional theory,” Physical Review B,
vol. 86, no. 6, p. 064437, 2012.
[28] J. P. Perdew, S. Kurth, A. Zupan, and P. Blaha, “Accurate density functional with correct
formal properties: A step beyond the generalized gradient approximation,” Physical review
letters, vol. 82, no. 12, p. 2544, 1999.
[29] R. M. Martin, Electronic structure: basic theory and practical methods. Cambridge university press, 2004.
[30] G. Giuliani and G. Vignale, Quantum theory of the electron liquid. Cambridge university
press, 2005.
[31] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal
properties from density-functional perturbation theory,” Rev. Mod. Phys., vol. 73, pp. 515–
562, Jul 2001.
[32] X. Gonze, “Adiabatic density-functional perturbation theory,” Physical Review A, vol. 52,
no. 2, p. 1096, 1995.
[33] G. Grimvall, The electron-phonon interaction in metals, vol. 8. North-Holland Amsterdam,
1981.
[34] F. Giustino, “Electron-phonon interactions from first principles,” Rev. Mod. Phys., vol. 89,
no. 1, p. 015003, 2017.
[35] M. Wierzbowska, S. de Gironcoli, and P. Giannozzi, “Origins of low-and high-pressure
discontinuities of t_{c} in niobium,” arXiv preprint cond-mat/0504077, 2005.
[36] P. B. Allen and R. C. Dynes, “Transition temperature of strong-coupled superconductors
reanalyzed,” Phys. Rev. B, vol. 12, no. 3, p. 905, 1975.
[37] W. L. McMillan, “Transition temperature of strong-coupled superconductors,” Phys. Rev.,
vol. 167, pp. 331–344, Mar 1968.
[38] S.-W. Wang, C.-R. Hsing, and C.-M. Wei, “Expedite random structure searching using
objects from wyckoff positions,” The Journal of chemical physics, vol. 148, no. 5, p. 054101,
2018.
[39] C. Kittel, Introduction to solid state physics. Wiley, 2005.
[40] L. Bosio, A. Defrain, H. Curien, and A. Rimsky, “Structure cristalline du gallium β,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 25,
no. 5, pp. 995–995, 1969.
[41] L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de ga γ,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 28,
no. 6, pp. 1974–1975, 1972.
[42] L. Bosio, H. Curien, M. Dupont, and A. Rimsky, “Structure cristalline de Ga δ,” Acta
Crystallographica Section B: Structural Crystallography and Crystal Chemistry, vol. 29,
no. 2, pp. 367–368, 1973.
[43] B. Chen, X. Duan, H. Wang, J. Du, Y. Zhou, C. Xu, Y. Zhang, L. Zhang, M. Wei, Z. Xia,
et al., “Large magnetoresistance and superconductivity in α-gallium single crystals,” npj
Quantum Materials, vol. 3, no. 1, p. 40, 2018.
[44] E. Charnaya, C. Tien, M. K. Lee, and Y. A. Kumzerov, “Superconductivity and structure
of gallium under nanoconfinement,” Journal of Physics: Condensed Matter, vol. 21, no. 45,
p. 455304, 2009.
[45] W. Buckel and R. Hilsch, “Einfluß der kondensation bei tiefen temperaturen auf den
elektrischen widerstand und die supraleitung für verschiedene metalle,” Zeitschrift für
Physik, vol. 138, no. 2, pp. 109–120, 1954.
[46] C. J. Pickard and R. Needs, “Ab initio random structure searching,” Journal of Physics:
Condensed Matter, vol. 23, no. 5, p. 053201, 2011.
[47] G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the liquid-metal–
amorphous-semiconductor transition in germanium,” Physical Review B, vol. 49, no. 20,
p. 14251, 1994.
[48] A. D. Becke and K. E. Edgecombe, “A simple measure of electron localization in atomic
and molecular systems,” The Journal of chemical physics, vol. 92, no. 9, pp. 5397–5403,
1990.
[49] M. de Koning, A. Antonelli, and D. A. C. Jara, “First-principles prediction of a metastable
crystalline phase of ga with cmcm symmetry,” Phys. Rev. B, vol. 80, p. 045209, Jul 2009.
[50] F. Greuter and P. Oelhafen, “Conduction electrons in solid and liquid gallium,” Zeitschrift
für Physik B Condensed Matter, vol. 34, no. 2, pp. 123–128, 1979.
[51] V. Heine, “Crystal structure of gallium metal,” Journal of Physics C: Solid State Physics,
vol. 1, no. 1, p. 222, 1968.
[52] I. Spagnolatti and M. Bernasconi, “Ab initio phonon dispersion relations of alpha-Ga,”
The European Physical Journal B - Condensed Matter, vol. 36, no. 1, pp. 87–90, 2003.
[53] L. Bosio, R. Cortes, J. R. D. Copley, W. D. Teuchert, and J. Lefebvre, “Phonons in
metastable beta gallium: neutron scattering measurements,” Journal of Physics F: Metal
Physics, vol. 11, no. 11, p. 2261, 1981.
[54] P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L.
Chiarotti, M. Cococcioni, I. Dabo, et al., “Quantum espresso: a modular and open-source
software project for quantum simulations of materials,” J. Phys.: Condens. Matter, vol. 21,
no. 39, p. 395502, 2009.
[55] J. G. Bednorz and K. A. Müller, “Possible hight c superconductivity in the ba- la- cu- o
system,” Zeitschrift für Physik B Condensed Matter, vol. 64, no. 2, pp. 189–193, 1986.
[56] J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,” Phys. Rev.,
vol. 108, pp. 1175–1204, Dec 1957.
[57] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, “Iron-based layered superconductor la [o1-x f x] feas (x= 0.05- 0.12) with t c= 26 k,” J. Am. Chem. Soc., vol. 130, no. 11,
pp. 3296–3297, 2008.
[58] J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimitsu, “Superconductivity at 39 k in magnesium diboride,” Nature, vol. 410, no. 6824, p. 63, 2001.
[59] T. E. Weller, M. Ellerby, S. S. Saxena, R. P. Smith, and N. T. Skipper, “Superconductivity
in the intercalated graphite compounds c 6 yb and c 6 ca,” Nat. Phys., vol. 1, no. 1, p. 39,
2005.
[60] G. Profeta, M. Calandra, and F. Mauri, “Phonon-mediated superconductivity in graphene
by lithium deposition,” Nat. Phys., vol. 8, pp. 131–134, Jan. 2012.
[61] M. M. Ugeda, A. J. Bradley, Y. Zhang, S. Onishi, Y. Chen, W. Ruan, C. Ojeda-Aristizabal,
H. Ryu, M. T. Edmonds, H.-Z. Tsai, et al., “Characterization of collective ground states
in single-layer nbse 2,” Nature Physics, vol. 12, no. 1, p. 92, 2016.
[62] Y. Ge, W. Wan, F. Yang, and Y. Yao, “The strain effect on superconductivity in phosphorene: a first-principles prediction,” New J. Phys., vol. 17, no. 3, p. 035008, 2015.
[63] M. Gao, Q.-Z. Li, X.-W. Yan, and J. Wang, “Prediction of phonon-mediated superconductivity in borophene,” Phys. Rev. B, vol. 95, no. 2, p. 024505, 2017.
[64] C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, et al.,
“Discovery of intrinsic ferromagnetism in two-dimensional van der waals crystals,” Nature,
vol. 546, no. 7657, p. 265, 2017.
[65] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong,
E. Schmidgall, M. A. McGuire, D. H. Cobden, et al., “Layer-dependent ferromagnetism in
a van der waals crystal down to the monolayer limit,” Nature, vol. 546, no. 7657, p. 270,
2017.
[66] X. Zhu, Y. Guo, H. Cheng, J. Dai, X. An, J. Zhao, K. Tian, S. Wei, X. C. Zeng,
C. Wu, et al., “Signature of coexistence of superconductivity and ferromagnetism in twodimensional nbse 2 triggered by surface molecular adsorption,” Nat. Commun., vol. 7,
p. 11210, 2016.
[67] M. U. Farooq, A. Hashmi, I. Khan, and J. Hong, “Superconductivity in two-dimensional
ferromagnetic mnb,” Scientific reports, vol. 7, no. 1, p. 17101, 2017.
[68] J. Linder and J. W. Robinson, “Superconducting spintronics,” Nature Physics, vol. 11,
no. 4, p. 307, 2015.
[69] G. G. Amatucci, “CoO2, The End Member of the LiCoO2 Solid Solution,” J. Electrochem.
Soc., vol. 143, p. 10, 1996.
[70] T. Motohashi, Y. Katsumata, T. Ono, R. Kanno, M. Karppinen, and H. Yamauchi, “Synthesis and Properties of CoO 2 , the x = 0 End Member of the Li x CoO 2 and Na x
CoO 2 Systems,” Chem. Mater., vol. 19, pp. 5063–5066, Oct. 2007.
[71] T. Motohashi, T. Ono, Y. Sugimoto, Y. Masubuchi, S. Kikkawa, R. Kanno, M. Karppinen,
and H. Yamauchi, “Electronic phase diagram of the layered cobalt oxide system Li x CoO
2 ( 0.0 ff x ff 1.0 ),” Phys. Rev. B, vol. 80, Oct. 2009.
[72] K. Mizushima, P. Jones, P. Wiseman, and J. B. Goodenough, “Lixcoo2 (0< x<-1): A new
cathode material for batteries of high energy density,” Mater. Res. Bull., vol. 15, no. 6,
pp. 783–789, 1980.
[73] K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, and T. Sasaki,
“Superconductivity in two-dimensional coo 2 layers,” Nature, vol. 422, no. 6927, p. 53,
2003.
[74] M. L. Foo, Y. Wang, S. Watauchi, H. Zandbergen, T. He, R. Cava, and N. Ong, “Charge
ordering, commensurability, and metallicity in the phase diagram of the layered na x co o
2,” Phys. Rev. Lett., vol. 92, no. 24, p. 247001, 2004.
[75] M. Onoda and A. Sugawara, “Stacking faults and metallic properties of triangular lattice
coo2 with a three-layer structure,” Journal of Physics: Condensed Matter, vol. 20, no. 17,
p. 175207, 2008.
[76] K.-W. Lee and W. E. Pickett, “Na x Co O 2 in the x → 0 regime: Coupling of structure
and correlation effects,” Phys. Rev. B, vol. 72, Sept. 2005.
[77] Z. Li, J. Yang, J. G. Hou, and Q. Zhu, “First-principles lattice dynamics of Na Co O 2,”
Phys. Rev. B, vol. 70, Oct. 2004.
[78] P. Zhang, W. Luo, V. H. Crespi, M. L. Cohen, and S. G. Louie, “Doping effects on the
electronic and structural properties of CoO 2 : An LSDA + U study,” Phys. Rev. B,
vol. 70, Aug. 2004.
[79] P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. B. Nardelli, M. Calandra, R. Car,
C. Cavazzoni, D. Ceresoli, M. Cococcioni, et al., “Advanced capabilities for materials
modelling with quantum espresso,” J. Phys.: Condens. Matter, vol. 29, no. 46, p. 465901,
2017.
[80] N. Marzari, D. Vanderbilt, A. De Vita, and M. Payne, “Thermal contraction and disordering of the al (110) surface,” Phys. Rev. Lett., vol. 82, no. 16, p. 3296, 1999.
[81] T. Sohier, M. Calandra, and F. Mauri, “Density functional perturbation theory for gated
two-dimensional heterostructures: Theoretical developments and application to flexural
phonons in graphene,” Phys. Rev. B, vol. 96, no. 7, p. 075448, 2017.
[82] J.-A. Yan, W. Y. Ruan, and M. Y. Chou, “Phonon dispersions and vibrational properties
of monolayer, bilayer, and trilayer graphene: Density-functional perturbation theory,”
Phys. Rev. B, vol. 77, p. 125401, Mar 2008.
[83] A. Molina-Sánchez and L. Wirtz, “Phonons in single-layer and few-layer mos2 and ws2,”
Phys. Rev. B, vol. 84, p. 155413, Oct 2011.
[84] J. Dai, Z. Li, J. Yang, and J. Hou, “A first-principles prediction of two-dimensional superconductivity in pristine B2c single layers,” Nanoscale, vol. 4, no. 10, p. 3032, 2012.
[85] L. Boeri, M. Calandra, I. I. Mazin, O. V. Dolgov, and F. Mauri, “Effects of magnetism
and doping on the electron-phonon coupling in bafe 2 as 2,” Physical Review B, vol. 82,
no. 2, p. 020506, 2010.
[86] E. Margine, H. Lambert, and F. Giustino, “Electron-phonon interaction and pairing mechanism in superconducting ca-intercalated bilayer graphene,” Sci. Rep., vol. 6, p. 21414,
2016.
[87] A. Y. Liu, I. Mazin, and J. Kortus, “Beyond eliashberg superconductivity in mgb 2:
anharmonicity, two-phonon scattering, and multiple gaps,” Phys. Rev. Lett., vol. 87, no. 8,
p. 087005, 2001.
[88] M. Kawamura, R. Akashi, and S. Tsuneyuki, “Anisotropic superconducting gaps in yni 2
b 2 c: A first-principles investigation,” Phys. Rev. B, vol. 95, no. 5, p. 054506, 2017.
[89] M. Lüders, M. Marques, N. Lathiotakis, A. Floris, G. Profeta, L. Fast, A. Continenza,
S. Massidda, and E. Gross, “Ab initio theory of superconductivity. i. density functional
formalism and approximate functionals,” Phys. Rev. B, vol. 72, no. 2, p. 024545, 2005.
[90] M. Marques, M. Lüders, N. Lathiotakis, G. Profeta, A. Floris, L. Fast, A. Continenza,
E. Gross, and S. Massidda, “Ab initio theory of superconductivity. ii. application to elemental metals,” Phys. Rev. B, vol. 72, no. 2, p. 024546, 2005.
[91] http://sctk.osdn.jp.
[92] T. Björkman, A. Gulans, A. V. Krasheninnikov, and R. M. Nieminen, “van der Waals
Bonding in Layered Compounds from Advanced Density-Functional First-Principles Calculations,” Phys. Rev. Lett., vol. 108, June 2012.
[93] V. R. Cooper, “Van der waals density functional: An appropriate exchange functional,”
Phys. Rev. B, vol. 81, no. 16, p. 161104, 2010.
[94] K. Lee, É. D. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth, “Higher-accuracy
van der waals density functional,” Phys. Rev. B, vol. 82, no. 8, p. 081101, 2010.
[95] O. A. Vydrov and T. Van Voorhis, “Nonlocal van der waals density functional made
simple,” Phys. Rev. Lett., vol. 103, no. 6, p. 063004, 2009.
[96] R. Sabatini, T. Gorni, and S. de Gironcoli, “Nonlocal van der waals density functional
made simple and efficient,” Phys. Rev. B, vol. 87, no. 4, p. 041108, 2013.
[97] N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier,
I. E. Castelli, A. Cepellotti, G. Pizzi, et al., “Two-dimensional materials from highthroughput computational exfoliation of experimentally known compounds,” Nat. Nanotechnol., vol. 13, no. 3, p. 246, 2018.
[98] K. Budde, E. Abram, V. Yeh, and M. C. Tringides, “Uniform, self-organized, seven-step
height p b/s i (111)-(7× 7) islands at low temperatures,” Phys. Rev. B, vol. 61, no. 16,
p. R10602, 2000.
[99] M. Hupalo, S. Kremmer, V. Yeh, L. Berbil-Bautista, E. Abram, and M. C. Tringides,
“Uniform island height selection in the low temperature growth of pb/si (111)-(7× 7),”
Surf. Sci., vol. 493, no. 1, pp. 526–538, 2001.
[100] W. B. Su, S. H. Chang, W. B. Jian, C. S. Chang, L. J. Chen, and T. T. Tsong, “Correlation
between quantized electronic states and oscillatory thickness relaxations of 2d pb islands
on si (111)-(7× 7) surfaces,” Phys. Rev. Lett., vol. 86, no. 22, p. 5116, 2001.
[101] L. Aballe, C. Rogero, P. Kratzer, S. Gokhale, and K. Horn, “Probing interface electronic
structure with overlayer quantum-well resonances: Al/si (111),” Phys. Rev. Lett., vol. 87,
no. 15, p. 156801, 2001.
[102] L. Aballe, C. Rogero, and K. Horn, “Quantum size effects in ultrathin epitaxial mg films
on si (111),” Phys. Rev. B, vol. 65, no. 12, p. 125319, 2002.
[103] Z. Zhang, Q. Niu, and C.-K. Shih, ““electronic growth”of metallic overlayers on semiconductor substrates,” Phys. Rev. Lett., vol. 80, no. 24, p. 5381, 1998.
[104] F. Schulte, “A theory of thin metal films: electron density, potentials and work function,”
Surf. Sci., vol. 55, no. 2, pp. 427–444, 1976.
[105] T.-C. Chiang, “Photoemission studies of quantum well states in thin films,” Surf. Sci.
Rep., vol. 39, no. 7, pp. 181–235, 2000.
[106] I. B. Altfeder, K. A. Matveev, and D. M. Chen, “Electron fringes on a quantum wedge,”
Phys. Rev. Lett., vol. 78, no. 14, p. 2815, 1997.
[107] A. Mans, J. H. Dil, A. R. H. F. Ettema, and H. H. Weitering, “Quantum electronic stability
and spectroscopy of ultrathin pb films on si (111) 7× 7,” Phys. Rev. B, vol. 66, no. 19,
p. 195410, 2002.
[108] H. Hong, C.-M. Wei, M. Y. Chou, Z. Wu, L. Basile, H. Chen, M. Holt, and T.-C. Chiang, “Alternating layer and island growth of pb on si by spontaneous quantum phase
separation,” Phys. Rev. Lett., vol. 90, no. 7, p. 076104, 2003.
[109] T. Valla, M. Kralj, A. Siber, M. Milun, P. Pervan, P. D. Johnson, and D. P. Woodruff,
“Oscillatory electron-phonon coupling in ultra-thin silver films on v(100),” J. Phys.: Condens. Matter, vol. 12, no. 28, p. L477, 2000.
[110] I. Y. Sklyadneva, R. Heid, K.-P. Bohnen, P. M. Echenique, and E. V. Chulkov, “Mass
enhancement parameter in free-standing ultrathin pb (111) films: The effect of spin-orbit
coupling,” Phys. Rev. B, vol. 87, no. 8, p. 085440, 2013.
[111] R. Otero, A. L. Vázquez de Parga, and R. Miranda, “Observation of preferred heights in
pb nanoislands: A quantum size effect,” Phys. Rev. B, vol. 66, no. 11, p. 115401, 2002.
[112] P. S. Kirchmann, M. Wolf, J. H. Dil, K. Horn, and U. Bovensiepen, “Quantum size effects
in pb/ si (111) investigated by laser-induced photoemission,” Phys. Rev. B, vol. 76, no. 7,
p. 075406, 2007.
[113] P. S. Kirchmann, L. Rettig, X. Zubizarreta, V. M. Silkin, E. V. Chulkov, and U. Bovensiepen, “Quasiparticle lifetimes in metallic quantum-well nanostructures,” Nat. Phys.,
vol. 6, no. 10, p. 782, 2010.
[114] J. Kim, C. Zhang, J. Kim, H. Gao, M.-Y. Chou, and C.-K. Shih, “Anomalous phase
relations of quantum size effects in ultrathin pb films on si (111),” Phys. Rev. B, vol. 87,
no. 24, p. 245432, 2013.
[115] R.-Y. Liu, A. Huang, C.-C. Huang, C.-Y. Lee, C.-H. Lin, C.-M. Cheng, K.-D. Tsuei, H.-T.
Jeng, I. Matsuda, and S.-J. Tang, “Deeper insight into phase relations in ultrathin pb
films,” Phys. Rev. B, vol. 92, no. 11, p. 115415, 2015.
[116] X. Liu and C.-Z. Wang, “Interplay between quantum confinement and surface effects in
thickness selective stability of thin ag and eu films,” J. Phys.: Condens. Matter, vol. 29,
no. 18, p. 185504, 2017.
[117] X. Zubizarreta, E. V. Chulkov, I. P. Chernov, A. S. Vasenko, I. Aldazabal, and V. M.
Silkin, “Quantum-size effects in the loss function of pb (111) thin films: An ab initio
study,” Phys. Rev. B, vol. 95, no. 23, p. 235405, 2017.
[118] L. Gavioli, K. R. Kimberlin, M. C. Tringides, J. F. Wendelken, and Z. Zhang, “Novel
growth of ag islands on si (111): Plateaus with a singular height,” Phys. Rev. Lett.,
vol. 82, no. 1, p. 129, 1999.
[119] Y. Z. Wu, C. Y. Won, E. Rotenberg, H. W. Zhao, F. Toyoma, N. V. Smith, and Z. Q.
Qiu, “Dispersion of quantum well states in cu/co/cu (001),” Phys. Rev. B, vol. 66, no. 24,
p. 245418, 2002.
[120] J. J. Paggel, C. M. Wei, M. Y. Chou, D.-A. Luh, T. Miller, and T.-C. Chiang, “Atomiclayer-resolved quantum oscillations in the work function: Theory and experiment for ag/
fe (100),” Phys. Rev. B, vol. 66, no. 23, p. 233403, 2002.
[121] M. Altman, W. Chung, Z. He, H. Poon, and S. Tong, “Quantum size effect in low energy
electron diffraction of thin films,” Applied Surf. Sci., vol. 169, pp. 82–87, 2001.
[122] R. Zdyb and E. Bauer, “Spin-dependent quantum size effects in the electron reflectivity of
ultrathin ferromagnetic crystals,” Surf. Rev. Lett., vol. 9, no. 03n04, pp. 1485–1491, 2002.
[123] Y. Jiang, K. Wu, Z. Tang, P. Ebert, and E. Wang, “Quantum size effect induced dilute
atomic layers in ultrathin al films,” Phys. Rev. B, vol. 76, no. 3, p. 035409, 2007.
[124] I. Sarria, C. Henriques, C. Fiolhais, and J. M. Pitarke, “Slabs of stabilized jellium:
Quantum-size and self-compression effects,” Phys. Rev. B, vol. 62, pp. 1699–1705, Jul
2000.
[125] Y. Han and D.-J. Liu, “Quantum size effects in metal nanofilms: Comparison of an
electron-gas model and density functional theory calculations,” Phys. Rev. B, vol. 80,
no. 15, p. 155404, 2009.
[126] J. Pitarke and A. Eguiluz, “Jellium surface energy beyond the local-density approximation:
Self-consistent-field calculations,” Phys. Rev. B, vol. 63, no. 4, p. 045116, 2001.
[127] M. Seidl, J. P. Perdew, M. Brajczewska, and C. Fiolhais, “Metal-cluster ionization energy:
A profile-insensitive exact expression for the size effect,” Phys. Rev. B, vol. 55, no. 19,
p. 13288, 1997.
[128] C. M. Horowitz, C. Proetto, and J. Pitarke, “Exact-exchange kohn-sham potential, surface
energy, and work function of jellium slabs,” Phys. Rev. B, vol. 78, no. 8, p. 085126, 2008.
[129] C. M. Horowitz, L. A. Constantin, C. Proetto, and J. Pitarke, “Position-dependent
exact-exchange energy for slabs and semi-infinite jellium,” Phys. Rev. B, vol. 80, no. 23,
p. 235101, 2009.
[130] L. A. Constantin, L. Chiodo, E. Fabiano, I. Bodrenko, and F. Della Sala, “Correlation
energy functional from jellium surface analysis,” Phys. Rev. B, vol. 84, no. 4, p. 045126,
2011.
[131] L. A. Constantin and J. M. Pitarke, “Adiabatic-connection-fluctuation-dissipation approach to long-range behavior of exchange-correlation energy at metal surfaces: A numerical study for jellium slabs,” Phys. Rev. B, vol. 83, no. 7, p. 075116, 2011.
[132] E. Engel and J. P. Perdew, “Theory of metallic clusters: Asymptotic size dependence of
electronic properties,” Phys. Rev. B, vol. 43, pp. 1331–1337, Jan 1991.
[133] C. Fall, N. Binggeli, and A. Baldereschi, “Deriving accurate work functions from thin-slab
calculations,” J. Phys.: Condens. Matter, vol. 11, no. 13, p. 2689, 1999.
[134] A. Kiejna, J. Peisert, and P. Scharoch, “Quantum-size effect in thin al (110) slabs,” Surf.
Sci., vol. 432, no. 1, pp. 54–60, 1999.
[135] P. J. Feibelman, “Static quantum-size effects in thin crystalline, simple-metal films,” Phys.
Rev. B, vol. 27, no. 4, p. 1991, 1983.
[136] S. Ciraci and I. P. Batra, “Theory of the quantum size effect in simple metals,” Phys. Rev.
B, vol. 33, no. 6, p. 4294, 1986.
[137] J. C. Boettger, “Persistent quantum-size effect in aluminum films up to twelve atoms
thick,” Phys. Rev. B, vol. 53, no. 19, p. 13133, 1996.
[138] W. Ming, S. Blair, and F. Liu, “Quantum size effect on dielectric function of ultrathin
metal film: a first-principles study of al (1 1 1),” J. Phys.: Condens. Matter, vol. 26,
no. 50, p. 505302, 2014.
[139] E. Wachowicz and A. Kiejna, “Bulk and surface properties of hexagonal-close-packed be
and mg,” J. Phys.: Condens. Matter, vol. 13, no. 48, p. 10767, 2001.
[140] K. F. Wojciechowski and H. Bogdanów, “Quantum size effects of ultrathin simple metal
layers on the example of lithium,” Surf. Sci., vol. 397, no. 1, pp. 53–57, 1998.
[141] P. J. Feibelman, “Erratum: Ab initio step and kink formation energies on pb (111)[phys.
rev. b 62, 17020 (2000)],” Phys. Rev. B, vol. 65, no. 12, p. 129902(E), 2002.
[142] G. Materzanini, P. Saalfrank, and P. J. D. Lindan, “Quantum size effects in metal films:
Energies and charge densities of pb (111) grown on cu (111),” Phys. Rev. B, vol. 63, no. 23,
p. 235405, 2001.
[143] C. M. Wei and M. Y. Chou, “Theory of quantum size effects in thin pb (111) films,” Phys.
Rev. B, vol. 66, no. 23, p. 233408, 2002.
[144] C. M. Wei and M. Y. Chou, “Quantum size effect in pb(100) films: Critical role of crystal
band structure,” Phys. Rev. B, vol. 75, p. 195417, May 2007.
[145] C. J. Fall, N. Binggeli, and A. Baldereschi, “Work functions at facet edges,” Phys. Rev.
Lett., vol. 88, no. 15, p. 156802, 2002.
[146] J. Henk, A. M. N. Niklasson, and B. Johansson, “Magnetism and anisotropy of ultrathin
ni films on cu (001),” Phys. Rev. B, vol. 59, no. 14, p. 9332, 1999.
[147] A. Ernst, J. Henk, M. Lüders, Z. Szotek, and W. M. Temmerman, “Quantum-size effects
in ultrathin ag films on v (001): Electronic structure and photoelectron spectroscopy,”
Phys. Rev. B, vol. 66, no. 16, p. 165435, 2002.
[148] N. E. Singh-Miller and N. Marzari, “Surface energies, work functions, and surface relaxations of low-index metallic surfaces from first principles,” Phys. Rev. B, vol. 80, no. 23,
p. 235407, 2009.
[149] E. Engel, “Exact exchange plane-wave-pseudopotential calculations for slabs: Extending
the width of the vacuum,” Phys. Rev. B, vol. 97, no. 15, p. 155112, 2018.
[150] G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996.
[151] P. E. Blöchl Phys. Rev. B, vol. 50, p. 17953, 1994.
[152] G. Kresse and D. Joubert Phys. Rev. B, vol. 59, p. 1758, 1999.
[153] J. P. Perdew, P. Ziesche, and H. Eschrig, Electronic structure of solids’91, vol. 11.
Akademie Verlag, Berlin, 1991.
[154] D. Vanderbilt, “Soft self-consistent pseudopotentials in a generalized eigenvalue formalism,” Phys. Rev. B, vol. 41, no. 11, p. 7892, 1990.
[155] M. Methfessel and A. T. Paxton, “High-precision sampling for brillouin-zone integration
in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989.
[156] S. Baroni, S. De Gironcoli, A. Dal Corso, and P. Giannozzi, “Phonons and related crystal
properties from density-functional perturbation theory,” Rev. Mod. Phys., vol. 73, no. 2,
p. 515, 2001.
[157] J. Paggel, T. Miller, and T.-C. Chiang, “Quantum-well states as fabry-perot modes in a
thin-film electron interferometer,” Science, vol. 283, no. 5408, pp. 1709–1711, 1999.
[158] W. Li, L. Huang, R. G. S. Pala, G.-H. Lu, F. Liu, J. W. Evans, and Y. Han, “Thicknessdependent energetics for pb adatoms on low-index pb nanofilm surfaces: First-principles
calculations,” Phys. Rev. B, vol. 96, no. 20, p. 205409, 2017.
[159] F. K. Sculte, “Energies and fermi level of electrons in thin size-quantized metal films,”
Physica Status Solidi B Basic Research, vol. 79, pp. 149–153, 1977.
[160] P. B. Allen, “Neutron spectroscopy of superconductors,” Phys. Rev. B, vol. 6, no. 7,
p. 2577, 1972.
[161] F. Giustino, M. L. Cohen, and S. G. Louie, “Electron-phonon interaction using wannier
functions,” Phys. Rev. B, vol. 76, no. 16, p. 165108, 2007.
[162] S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, “Epw: Electron–phonon coupling,
transport and superconducting properties using maximally localized wannier functions,”
Comput. Phys. Commun., vol. 209, pp. 116–133, 2016.
[163] L. N. Oliveira, E. K. U. Gross, and W. Kohn, “Density-functional theory for superconductors,” Phys. Rev. Lett., vol. 60, pp. 2430–2433, Jun 1988.
[164] E. K. U. G. M. Lüders, “Scdft2005,” Phys. Rev. B, vol. 72, p. 024545, 2005.
[165] G. Q. Huang, “Electronic structures, surface phonons, and electron-phonon interactions of
al (100) and al (111) thin films from density functional perturbation theory,” Phys. Rev.
B, vol. 78, no. 21, p. 214514, 2008.
[166] T. Miller, M. Y. Chou, and T.-C. Chiang, “Phase relations associated with one-dimensional
shell effects in thin metal films,” Phys. Rev. Lett., vol. 102, p. 236803, Jun 2009.
[167] L. Yang, Z.-G. Chen, M. Hong, G. Han, and J. Zou, “Enhanced thermoelectric performance
of nanostructured bi2te3 through significant phonon scattering,” ACS applied materials &
interfaces, vol. 7, no. 42, pp. 23694–23699, 2015.
[168] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Highperformance photovoltaic perovskite layers fabricated through intramolecular exchange,”
Science, vol. 348, no. 6240, pp. 1234–1237, 2015.
[169] S. Bhattacharya, A. Bohra, R. Basu, R. Bhatt, S. Ahmad, K. Meshram, A. Debnath,
A. Singh, S. K. Sarkar, M. Navneethan, et al., “High thermoelectric performance of (agcrse
2) 0.5 (cucrse 2) 0.5 nano-composites having all-scale natural hierarchical architectures,”
Journal of Materials Chemistry A, vol. 2, no. 40, pp. 17122–17129, 2014.
[170] W.-S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, and
Z. Ren, “Thermoelectric property studies on cu-doped n-type cuxbi2te2. 7se0. 3 nanocomposites,” Advanced Energy Materials, vol. 1, no. 4, pp. 577–587, 2011.
[171] Y. Pei, J. Lensch-Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, “High thermoelectric
performance in pbte due to large nanoscale ag2te precipitates and la doping,” Advanced
Functional Materials, vol. 21, no. 2, pp. 241–249, 2011.
[172] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of
electronic bands for high performance bulk thermoelectrics,” Nature, vol. 473, no. 7345,
p. 66, 2011.
[173] Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, et al., “Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide,” Energy & Environmental Science, vol. 5, no. 1, pp. 5246–
5251, 2012.
[174] A. T. Duong, V. Q. Nguyen, G. Duvjir, S. Kwon, J. Y. Song, J. K. Lee, J. E. Lee, S. Park,
T. Min, J. Lee, et al., “Achieving zt= 2.2 with bi-doped n-type snse single crystals,” Nature
communications, vol. 7, p. 13713, 2016.
[175] D. Ibrahim, J.-B. Vaney, S. Sassi, C. Candolfi, V. Ohorodniichuk, P. Levinsky, C. Semprimoschnig, A. Dauscher, and B. Lenoir, “Reinvestigation of the thermal properties of
single-crystalline snse,” Applied Physics Letters, vol. 110, no. 3, p. 032103, 2017.
[176] P.-C. Wei, S. Bhattacharya, J. He, S. Neeleshwar, R. Podila, Y. Chen, and A. Rao, “The
intrinsic thermal conductivity of snse,” Nature, vol. 539, no. 7627, p. E1, 2016.
[177] G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmentedwave method,” Physical Review B, vol. 59, no. 3, p. 1758, 1999.
[178] M. Shishkin and G. Kresse, “Self-consistent g w calculations for semiconductors and insulators,” Physical Review B, vol. 75, no. 23, p. 235102, 2007.
[179] R. Godby, M. Schlüter, and L. Sham, “Self-energy operators and exchange-correlation
potentials in semiconductors,” Physical Review B, vol. 37, no. 17, p. 10159, 1988.
[180] H. Goldsmid and J. Sharp, “Estimation of the thermal band gap of a semiconductor from
seebeck measurements,” Journal of electronic materials, vol. 28, no. 7, pp. 869–872, 1999.
[181] P.-C. Wei, S. Bhattacharya, Y.-F. Liu, F. Liu, J. He, Y.-H. Tung, C.-C. Yang, C.-R.
Hsing, D.-L. Nguyen, C.-M. Wei, et al., “Thermoelectric figure-of-merit of fully dense
single-crystalline snse,” ACS Omega, vol. 4, no. 3, pp. 5442–5450, 2019.
[182] K. Kuroki and R. Arita, ““pudding mold”band drives large thermopower in naxcoo2,”
Journal of the Physical Society of Japan, vol. 76, no. 8, pp. 083707–083707, 2007.
[183] Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica,
vol. 34, no. 1, pp. 149–154, 1967.
[184] N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo, and S. I. Seok, “Compositional engineering of perovskite materials for high-performance solar cells,” Nature,
vol. 517, no. 7535, p. 476, 2015.
[185] D. Luo, W. Yang, Z. Wang, A. Sadhanala, Q. Hu, R. Su, R. Shivanna, G. F. Trindade,
J. F. Watts, Z. Xu, et al., “Enhanced photovoltage for inverted planar heterojunction
perovskite solar cells,” Science, vol. 360, no. 6396, pp. 1442–1446, 2018.
[186] P. E. Blöchl, “Projector augmented-wave method,” Physical review B, vol. 50, no. 24,
p. 17953, 1994.
[187] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set,” Computational materials science, vol. 6,
no. 1, pp. 15–50, 1996.
[188] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, “A consistent and accurate ab initio
parametrization of density functional dispersion correction (dft-d) for the 94 elements
h-pu,” The Journal of chemical physics, vol. 132, no. 15, p. 154104, 2010.
[189] J. Neugebauer and M. Scheffler, “Adsorbate-substrate and adsorbate-adsorbate interactions of na and k adlayers on al (111),” Physical Review B, vol. 46, no. 24, p. 16067,
1992.
[190] H.-C. Hsu, B.-C. Huang, S.-C. Chin, C.-R. Hsing, D.-L. Nguyen, M. Schnedler, R. Sankar,
R. E. Dunin-Borkowski, C.-M. Wei, C.-W. Chen, et al., “Photodriven dipole reordering:
Key to carrier separation in metalorganic halide perovskites,” ACS nano, 2019. |