參考文獻 |
1. Lloyd-Hughes, J. and T.-I. Jeon, A Review of the Terahertz Conductivity of Bulk and Nano-Materials. Journal of Infrared, Millimeter, and Terahertz Waves, 2012. 33(9): p. 871-925.
2. Peng, L., et al., Holey 2D Nanomaterials for Electrochemical Energy Storage. Advanced Energy Materials, 2018. 8(9): p. 1702179.
3. Ishigami, M., et al., Atomic structure of graphene on SiO2. Nano Lett, 2007. 7(6): p. 1643-8.
4. Berger, C., et al., Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. The Journal of Physical Chemistry B, 2004. 108(52): p. 19912-19916.
5. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
6. Fischbein, M.D. and M. Drndić, Electron beam nanosculpting of suspended graphene sheets. Applied Physics Letters, 2008. 93(11).
7. Celebi, K., et al., Ultimate permeation across atomically thin porous graphene. Science, 2014. 344(6181): p. 289-92.
8. Koenig, S.P., et al., Selective molecular sieving through porous graphene. Nat Nanotechnol, 2012. 7(11): p. 728-32.
9. Surwade, S.P., et al., Water desalination using nanoporous single-layer graphene. Nat Nanotechnol, 2015. 10(5): p. 459-64.
10. Kuan, A.T., et al., Electrical pulse fabrication of graphene nanopores in electrolyte solution. Appl Phys Lett, 2015. 106(20): p. 203109.
11. O′Hern, S.C., et al., Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett, 2014. 14(3): p. 1234-41.
12. Zhang, L.L., et al., Highly conductive and porous activated reduced graphene oxide films for high-power supercapacitors. Nano Lett, 2012. 12(4): p. 1806-12.
13. Zhao, X., et al., Flexible holey graphene paper electrodes with enhanced rate capability for energy storage applications. ACS Nano, 2011. 5(11): p. 8739-49.
14. Chang, B., et al., 2D graphene-like hierarchically porous carbon nanosheets from a nano-MgO template and ZnCl2activation: morphology, porosity and supercapacitance performance. RSC Adv., 2016. 6(75): p. 71360-71369.
15. Sun, X., et al., Activation of graphene aerogel with phosphoric acid for enhanced electrocapacitive performance. Carbon, 2015. 92: p. 1-10.
16. Wang, S., et al., Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc, 2009. 131(46): p. 16832-7.
17. Xu, Y., et al., Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano, 2010. 4(7): p. 4324-30.
18. Xu, Y., et al., Holey graphene frameworks for highly efficient capacitive energy storage. Nat Commun, 2014. 5: p. 4554.
19. Wang, H., et al., Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. Journal of Materials Chemistry A, 2013. 1(38).
20. Nakada, K., et al., Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Physical Review B, 1996. 54(24): p. 17954-17961.
21. Bai, J., et al., Graphene nanomesh. Nat Nanotechnol, 2010. 5(3): p. 190-4.
22. Liang, X., et al., Formation of bandgap and subbands in graphene nanomeshes with sub-10 nm ribbon width fabricated via nanoimprint lithography. Nano Lett, 2010. 10(7): p. 2454-60.
23. Venkatesan, B.M. and R. Bashir, Nanopore sensors for nucleic acid analysis. Nat Nanotechnol, 2011. 6(10): p. 615-24.
24. Nelson, T., B. Zhang, and O.V. Prezhdo, Detection of nucleic acids with graphene nanopores: ab initio characterization of a novel sequencing device. Nano Lett, 2010. 10(9): p. 3237-42.
25. You, Y., et al., Graphene and graphene oxide for desalination. Nanoscale, 2016. 8(1): p. 117-9.
26. Cohen-Tanugi, D. and J.C. Grossman, Water desalination across nanoporous graphene. Nano Lett, 2012. 12(7): p. 3602-8.
27. Simon, P. and Y. Gogotsi, Materials for electrochemical capacitors. Nat Mater, 2008. 7(11): p. 845-54.
28. Chen, T. and L. Dai, Carbon nanomaterials for high-performance supercapacitors. Materials Today, 2013. 16(7-8): p. 272-280.
29. Huang, J., K. Wang, and Z. Wei, Conducting polymernanowire arrays with enhanced electrochemical performance. J. Mater. Chem., 2010. 20(6): p. 1117-1121.
30. Wang, K., et al., High-performance two-ply yarn supercapacitors based on carbon nanotubes and polyaniline nanowire arrays. Adv Mater, 2013. 25(10): p. 1494-8.
31. Wang, K., et al., Flexible supercapacitors based on cloth-supported electrodes of conducting polymer nanowire array/SWCNT composites. Journal of Materials Chemistry, 2011. 21(41).
32. Zhang, H., et al., Electrochemically assembling of polythiophene film in ionic liquids (ILs) microemulsions and its application in an electrochemical capacitor. Electrochimica Acta, 2014. 120: p. 122-127.
33. Bai, X., et al., 3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage. Electrochimica Acta, 2013. 106: p. 219-225.
34. Balan, B.K., et al., Carbon nanofiber–RuO2–poly(benzimidazole) ternary hybrids for improved supercapacitor performance. RSC Advances, 2013. 3(7).
35. Zhang, X., et al., Hydrothermal-Reduction Synthesis of Manganese Oxide Nanomaterials for Electrochemical Supercapacitors. Journal of Nanoscience and Nanotechnology, 2010. 10(11): p. 7711-7714.
36. Zhang, X., et al., Comparative performance of birnessite-type MnO2 nanoplates and octahedral molecular sieve (OMS-5) nanobelts of manganese dioxide as electrode materials for supercapacitor application. Electrochimica Acta, 2014. 132: p. 315-322.
37. Feng, L., et al., Recent progress in nickel based materials for high performance pseudocapacitor electrodes. Journal of Power Sources, 2014. 267: p. 430-444.
38. Yuan, C., et al., Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Advances, 2013. 3(40).
39. Ambade, R.B., et al., Polythiophene infiltrated TiO2 nanotubes as high-performance supercapacitor electrodes. Chem Commun (Camb), 2013. 49(23): p. 2308-10.
40. Stoller, M.D., et al., Graphene-based ultracapacitors. Nano Lett, 2008. 8(10): p. 3498-502.
41. Zhu, Y., et al., Carbon-based supercapacitors produced by activation of graphene. Science, 2011. 332(6037): p. 1537-41.
42. Zhou, D., et al., A general and scalable synthesis approach to porous graphene. Nat Commun, 2014. 5: p. 4716.
43. Zhang, Y., et al., Anisotropic Hydrogen Etching of Chemical Vapor Deposited Graphene. ACS Nano, 2012. 6(1): p. 126-132.
44. Hsieh, C.-T., et al., Electrochemical Capacitors Based on Graphene Oxide Sheets Using Different Aqueous Electrolytes. The Journal of Physical Chemistry C, 2011. 115(25): p. 12367-12374.
45. Zhang, M., et al., Improving the electrochemical performances of active carbon-based supercapacitors through the combination of introducing functional groups and using redox additive electrolyte. Journal of Saudi Chemical Society, 2018. 22(8): p. 908-918.
46. Sari, N.P., et al., Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor. Phys Chem Chem Phys, 2017. 19(45): p. 30381-30392.
47. Bai, Y., et al., Formation process of holey graphene and its assembled binder-free film electrode with high volumetric capacitance. Electrochimica Acta, 2016. 187: p. 543-551.
48. Han, X., et al., Scalable holey graphene synthesis and dense electrode fabrication toward high-performance ultracapacitors. ACS Nano, 2014. 8(8): p. 8255-65.
49. Hu, X., et al., A facile synthesis of reduced holey graphene oxide for supercapacitors. Chem Commun (Camb), 2017. 53(99): p. 13225-13228.
50. Zoromba, M.S., et al., Electrochemical Activation of Graphene at Low Temperature: The Synthesis of Three-Dimensional Nanoarchitectures for High Performance Supercapacitors and Capacitive Deionization. ACS Sustainable Chemistry & Engineering, 2017. 5(6): p. 4573-4581.
|