參考文獻 |
1. Schwierz, F., Graphene Transistors: Status, Prospects, and Problems. Proceedings of the IEEE, 2013. 101(7): p. 1567-1584.
2. KS, N., G. AK, M. SV, J. D, Z. Y, D. SV, G. IV, and F. AA, Electric Field Effect in Atomically Thin Carbon Films. SCIENCE, 2004. 306(5696): p. 666-669.
3. Schwierz, F., Nanoelectronics: Flat transistors get off the ground. Nat Nanotechnol, 2011. 6(3): p. 135-6.
4. Shen, P.-C., Y. Lin, H. Wang, J.-H. Park, W.S. Leong, A.-Y. Lu, T. Palacios, and J. Kong, CVD Technology for 2-D Materials. IEEE Transactions on Electron Devices, 2018. 65(10): p. 4040-4052.
5. Lee, H.C., W.-W. Liu, S.-P. Chai, A.R. Mohamed, A. Aziz, C.-S. Khe, N.M.S. Hidayah, and U. Hashim, Review of the synthesis, transfer, characterization and growth mechanisms of single and multilayer graphene. RSC Advances, 2017. 7(26): p. 15644-15693.
6. Song, Y., S. Chang, S. Gradecak, and J. Kong, Visibly-Transparent Organic Solar Cells on Flexible Substrates with All-Graphene Electrodes. Advanced Energy Materials, 2016. 6(20): p. 1600847.
7. Wang, X., L. Zhi, and K. Müllen, Transparent, Conductive Graphene Electrodes for Dye-Sensitized Solar Cells. Nano Letters, 2008. 8(1): p. 323-327.
8. Pumera, M., Graphene in biosensing. Materials Today, 2011. 14(7-8): p. 308-315.
9. Wu, Y., D.B. Farmer, F. Xia, and P. Avouris, Graphene Electronics: Materials, Devices, and Circuits. Proceedings of the IEEE, 2013. 101(7): p. 1620-1637.
10. Khan, U., T.H. Kim, H. Ryu, W. Seung, and S.W. Kim, Graphene Tribotronics for Electronic Skin and Touch Screen Applications. Adv Mater, 2017. 29(1).
11. Wang, J., M. Liang, Y. Fang, T. Qiu, J. Zhang, and L. Zhi, Rod-Coating: Towards Large-Area Fabrication of Uniform Reduced Graphene Oxide Films for Flexible Touch Screens. Adv Mater, 2012. 24(21): p. 2874-8.
12. Seyller, T., A. Bostwick, K.V. Emtsev, K. Horn, L. Ley, J.L. McChesney, T. Ohta, J.D. Riley, E. Rotenberg, and F. Speck, Epitaxial graphene: a new material. physica status solidi (b), 2008. 245(7): p. 1436-1446.
13. Li, X., W. Cai, L. Colombo, and R.S. Ruoff, Evolution of Graphene Growth on Ni and Cu by Carbon Isotope Labeling. Nano Letters, 2009. 9(12): p. 4268-4272.
14. Fang, W., A.L. Hsu, Y. Song, and J. Kong, Review of Large-area Bilayer Graphene Synthesis by Chemical Vapor Deposition. Nanoscale, 2015. 7(48): p. 20335-51.
15. Shin, Y.C., M.S. Dresselhaus, and J. Kong, Preparation of Graphene with Large Area, in Carbon Nanotubes and Graphene. 2014. p. 39-76.
16. Zhao, G., X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y. He, R. Hu, T. Yang, R. Zhang, C. Li, J. Kong, J.B. Xu, R.S. Ruoff, and H. Zhu, The physics and chemistry of graphene-on-surfaces. Chem Soc Rev, 2017. 46(15): p. 4417-4449.
17. Vlassiouk, I., P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, and S. Smirnov, Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013. 54: p. 58-67.
18. Ni, Z.H., H.M. Wang, Z.Q. Luo, Y.Y. Wang, T. Yu, Y.H. Wu, and Z.X. Shen, The effect of vacuum annealing on graphene. Journal of Raman Spectroscopy, 2009. 41(5): p. 479-483.
19. Hao, Y., B. Srinivasan, L. Wang, Y. Liu, H. Chen, S. Nie, X.-H. Wang, H. Chou, C. Tan, B. Fallahazad, R. Hariharaputran, C. W Magnuson, E. Tutuc, B. I Yakobson, K. F McCarty, Y.-W. Zhang, P. Kim, J. Hone, L. Colombo, and R. Ruoff, The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper, 2013. 342(6159): p. 720-723.
20. Ding, D., P. Solís-Fernández, R.M. Yunus, H. Hibino, and H. Ago, Behavior and role of superficial oxygen in Cu for the growth of large single-crystalline graphene. Applied Surface Science, 2017. 408: p. 142-149.
21. Zhang, X., L. Wang, J. Xin, B.I. Yakobson, and F. Ding, Role of hydrogen in graphene chemical vapor deposition growth on a copper surface. J Am Chem Soc, 2014. 136(8): p. 3040-7.
22. Reina, A., H. Son, L. Jiao, B. Fan, M.S. Dresselhaus, Z. Liu, and J. Kong, Transferring and Identification of Single- and Few-Layer Graphene on Arbitrary Substrates. The Journal of Physical Chemistry C, 2008. 112(46): p. 17741-17744.
23. Li, X., Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R.D. Piner, L. Colombo, and R.S. Ruoff, Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes. Nano Letters, 2009. 9(12): p. 4359-4363.
24. Bae, S., H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
25. Nasir, T., B.J. Kim, K.W. Kim, S.H. Lee, H.K. Lim, D.K. Lee, B.J. Jeong, H.C. Kim, H.K. Yu, and J.Y. Choi, Design of softened polystyrene for crack- and contamination-free large-area graphene transfer. Nanoscale, 2018. 10(46): p. 21865-21870.
26. Kang, J., D. Shin, S. Bae, and B.H. Hong, Graphene transfer: key for applications. Nanoscale, 2012. 4(18): p. 5527-37.
27. Zhang, Z., J. Du, D. Zhang, H. Sun, L. Yin, L. Ma, J. Chen, D. Ma, H.M. Cheng, and W. Ren, Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
28. Chen, T.L., D.S. Ghosh, V. Mkhitaryan, and V. Pruneri, Hybrid transparent conductive film on flexible glass formed by hot-pressing graphene on a silver nanowire mesh. ACS Appl Mater Interfaces, 2013. 5(22): p. 11756-61.
29. Martins, L.G., Y. Song, T. Zeng, M.S. Dresselhaus, J. Kong, and P.T. Araujo, Direct transfer of graphene onto flexible substrates. Proc Natl Acad Sci U S A, 2013. 110(44): p. 17762-7.
30. Abhilash, T.S., R. De Alba, N. Zhelev, H.G. Craighead, and J.M. Parpia, Transfer printing of CVD graphene FETs on patterned substrates. Nanoscale, 2015. 7(33): p. 14109-13.
31. Ma, X., Q. Liu, D. Xu, Y. Zhu, S. Kim, Y. Cui, L. Zhong, and M. Liu, Capillary-Force-Assisted Clean-Stamp Transfer of Two-Dimensional Materials. Nano Lett, 2017. 17(11): p. 6961-6967.
32. Liu, L., X. Liu, Z. Zhan, W. Guo, C. Xu, J. Deng, D. Chakarov, P. Hyldgaard, E. Schröder, A. Yurgens, and J. Sun, A Mechanism for Highly Efficient Electrochemical Bubbling Delamination of CVD-Grown Graphene from Metal Substrates. Advanced Materials Interfaces, 2016. 3(8) : p. 1500492.
33. Wang, X., L. Tao, Y. Hao, Z. Liu, H. Chou, I. Kholmanov, S. Chen, C. Tan, N. Jayant, Q. Yu, D. Akinwande, and R.S. Ruoff, Direct delamination of graphene for high-performance plastic electronics. Small, 2014. 10(4): p. 694-8.
34. Cherian, C.T., F. Giustiniano, I. Martin-Fernandez, H. Andersen, J. Balakrishnan, and B. Ozyilmaz, ′Bubble-free′ electrochemical delamination of CVD graphene films. Small, 2015. 11(2): p. 189-94.
35. Lv, R., J.A. Robinson, R.E. Schaak, D. Sun, Y. Sun, T.E. Mallouk, and M. Terrones, Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc Chem Res, 2015. 48(1): p. 56-64.
36. Splendiani, A., L. Sun, Y. Zhang, T. Li, J. Kim, C.Y. Chim, G. Galli, and F. Wang, Emerging photoluminescence in monolayer MoS2. Nano Lett, 2010. 10(4): p. 1271-5.
37. Coleman, J.N., M. Lotya, A. O’Neill, S.D. Bergin, P.J. King, U. Khan, K. Young, A. Gaucher, S. De, R.J. Smith, I.V. Shvets, S.K. Arora, G. Stanton, H.-Y. Kim, K. Lee, G.T. Kim, G.S. Duesberg, T. Hallam, J.J. Boland, J.J. Wang, J.F. Donegan, J.C. Grunlan, G. Moriarty, A. Shmeliov, R.J. Nicholls, J.M. Perkins, E.M. Grieveson, K. Theuwissen, D.W. McComb, P.D. Nellist, and V. Nicolosi, Two-Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. Science, 2011. 331(6017): p. 568-571.
38. Zhang, W., J.K. Huang, C.H. Chen, Y.H. Chang, Y.J. Cheng, and L.J. Li, High-gain phototransistors based on a CVD MoS(2) monolayer. Adv Mater, 2013. 25(25): p. 3456-61.
39. Ma, D., J. Shi, Q. Ji, K. Chen, J. Yin, Y. Lin, Y. Zhang, M. Liu, Q. Feng, X. Song, X. Guo, J. Zhang, Y. Zhang, and Z. Liu, A universal etching-free transfer of MoS2 films for applications in photodetectors. Nano Research, 2015. 8(11): p. 3662-3672.
40. Lin, Z., Y. Zhao, C. Zhou, R. Zhong, X. Wang, Y.H. Tsang, and Y. Chai, Controllable Growth of Large-Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film. Sci Rep, 2015. 5: p. 18596.
41. Lin, Y.-M., K.A. Jenkins, A. Valdes-Garcia, J.P. Small, D.B. Farmer, and P. Avouris, Operation of Graphene Transistors at Gigahertz Frequencies. NANO LETTERS, 2009. 9(1): p. 422-426.
42. Adam, S., E.H. Hwang, V.M. Galitski, and S.D. Sarma, A self-consistent theory for graphene transport. PNAS, 2007. 104(47): p. 18392–18397.
43. Ni, Z.H., L.A. Ponomarenko, R.R. Nair, R. Yang, S. Anissimova, I.V. Grigorieva, F. Schedin, P. Blake, Z.X. Shen, E.H. Hill, K.S. Novoselov, and A.K. Geim, On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett, 2010. 10(10): p. 3868-72.
44. Suk, J.W., W.H. Lee, J. Lee, H. Chou, R.D. Piner, Y. Hao, D. Akinwande, and R.S. Ruoff, Enhancement of the electrical properties of graphene grown by chemical vapor deposition via controlling the effects of polymer residue. Nano Lett, 2013. 13(4): p. 1462-7.
45. Pirkle, A., J. Chan, A. Venugopal, D. Hinojos, C.W. Magnuson, S. McDonnell, L. Colombo, E.M. Vogel, R.S. Ruoff, and R.M. Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters, 2011. 99(12) : p. 122108.
46. Farmer, D.B., R. Golizadeh-Mojarad, V. Perebeinos, Y.M. Lin, G.S. Tulevski, J.C. Tsang, and P. Avouris, Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett, 2009. 9(1): p. 388-92.
47. Bolotin, K.I., K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Ultrahigh electron mobility in suspended graphene. Solid State Communications, 2008. 146(9-10): p. 351-355.
48. J. SCOTT BUNCH, A.M.V.D.Z., SCOTT S. VERBRIDGE, IAN W. FRANK, DAVID M. TANENBAUM, JEEVAK M. PARPIA, HAROLD G. CRAIGHEAD, PAUL L. MCEUEN, Electromechanical Resonators from Graphene Sheets. SCIENCE, 2007. 315: p. 490-493.
49. Balandin, A.A., S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C.N. Lau, Superior Thermal Conductivity of Single-Layer Graphene. Nano Letters, 2008. 8(3): p. 902-907.
50. Lee, W.H., J. Park, Y. Kim, K.S. Kim, B.H. Hong, and K. Cho, Control of graphene field-effect transistors by interfacial hydrophobic self-assembled monolayers. Adv Mater, 2011. 23(30): p. 3460-4.
51. Ulman, A., Formation and Structure of Self-Assembled Monolayers. Chemical Reviews, 1996. 96(4): p. 1533-1554.
52. Ito, Y., A.A. Virkar, S. Mannsfeld, J.H. Oh, M. Toney, J. Locklin, and Z. Bao, Crystalline Ultrasmooth Self-Assembled Monolayers of Alkylsilanes for Organic Field-Effect Transistors. Journal of the American Chemical Society, 2009. 131(26): p. 9396-9404.
53. Roya Maboudian , W. Robert Ashurst, and C. Carraro, Self-assembled monolayers as anti-stiction coatings for MEMS: characteristics and recent developments. Elsevier, 2000. 82(1-3): p. 219-223.
54. Zhuang, Y.X., O. Hansen, T. Knieling, C. Wang, P. Rombach, W. Lang, W. Benecke, M. Kehlenbeck, and J. Koblitz, Vapor-Phase Self-Assembled Monolayers for Anti-Stiction Applications in MEMS. Journal of Microelectromechanical Systems, 2007. 16(6): p. 1451-1460.
55. Tu, Q., H.S. Kim, T.J. Oweida, Z. Parlak, Y.G. Yingling, and S. Zauscher, Interfacial Mechanical Properties of Graphene on Self-Assembled Monolayers: Experiments and Simulations. ACS Appl Mater Interfaces, 2017. 9(11): p. 10203-10213.
56. Yan, Z., Z. Sun, W. Lu, J. Yao, Y. Zhu, and J.M. Tour, <Controlled Modulation of Electronic properties of graphene.pdf>. ACS Nano, 2011. 5(2): p. 1535-1540.
57. Chen, S.Y., P.H. Ho, R.J. Shiue, C.W. Chen, and W.H. Wang, Transport/magnetotransport of high-performance graphene transistors on organic molecule-functionalized substrates. Nano Lett, 2012. 12(2): p. 964-9.
58. Li, Y., C.Y. Xu, P. Hu, and L. Zhen, Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano, 2013. 7(9): p. 7795-804.
59. Wang, B., M. Huang, L. Tao, S.H. Lee, A.R. Jang, B.W. Li, H.S. Shin, D. Akinwande, and R.S. Ruoff, Support-Free Transfer of Ultrasmooth Graphene Films Facilitated by Self-Assembled Monolayers for Electronic Devices and Patterns. ACS Nano, 2016. 10(1): p. 1404-10.
60. Ho, K.I., M. Boutchich, C.Y. Su, R. Moreddu, E.S. Marianathan, L. Montes, and C.S. Lai, A Self-Aligned High-Mobility Graphene Transistor: Decoupling the Channel with Fluorographene to Reduce Scattering. Adv Mater, 2015. 27(41): p. 6519-25.
61. Jeon, J., S.K. Jang, S.M. Jeon, G. Yoo, Y.H. Jang, J.H. Park, and S. Lee, Layer-controlled CVD growth of large-area two-dimensional MoS2 films. Nanoscale, 2015. 7(5): p. 1688-95.
|