博碩士論文 106350602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:13.59.113.164
姓名 杜明(Pierre-Claude Duméus)  查詢紙本館藏   畢業系所 國際永續發展碩士在職專班
論文名稱 海地太子港都市區產生的城市固體廢物的能源潛力
(Energy potential of the municipal solid waste generated in the Port-au-Prince metropolitan area of Haiti)
相關論文
★ Study on Cleaner Production Opportunities for the Sugar Industry in Belize.★ 聖薩爾瓦多都會區設置固體廢棄物資源回收廠可行性研究
★ The Study of Environmental Awareness and Waste Minimization Approaches for Hotel Management in Belize★ Improvement of Solid Waste Management and Design of Biogas Recovery System in Tegucigalpa, Honduras
★ 宏都拉斯之德古西加巴市設置都市垃圾回收處理廠的可行性研究★ 於貝里斯市進行移除簡易垃圾棄置場與興建衛生掩埋場的成本效益評估
★ 在低開發中國家廢物堆肥系統的設計和計畫建立-以甘比亞的Banjul和Kanifing的廢物推肥系統為例。★ 加勒比海地區開發中國家發展風力發電之經濟評估:以聖文森的風力發電場計畫為例
★ 宏都拉斯德古斯加巴市暴風雨災害引致固體廢棄物產生量 之推估及緊急堆置場地遴選評估之研究★ The Policy of PES (Payment for Environmental Services) in Indonesia. An Application Study for the Watershed Area Krueng Peusangan of Bireuen District in Aceh Province, Indonesia
★ 史瓦濟蘭於回收農業及林業殘料用以開發生質能源潛力研究★ 史瓦濟南墨巴本市都市固體廢棄物源分離方法之開發
★ 封閉鉛礦場對於鄰近居民健康及環境之影響研究 以泰國甘差那布里府之克里汐灣採礦場為例★ Study of Establishing Composting System for Municipal Solid Waste in Petit-Goave City of Haiti
★ 貝里斯消費者購置電動汽車之經濟評估及消費者需求之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海地太子港都會區面臨嚴重的環境衛生問題,主要是由於缺乏妥善的都市固體廢物管理制度及尚無任何廢物回收或處理與處置設施。除此之外,海地在能源供應方面也面臨危機。迄今海地百分之75的能源是使用薪柴和木炭,該類能源的消耗有80%用於家庭的炊事上;而海地居民的電氣化只有38%。這些情況將使海地的環境加速惡化。
官方研究文件顯示,每天有653公噸都市固體廢物被運往太子港的露天垃圾掩埋場填埋,相信應該仍有數百噸垃圾無處可去。依據收集之調查資料發現,海地都市垃圾的有機成分達73.8% (重量比),垃圾含水量高達73%。本研究旨在探討適用於海地的廢物能源回收技術,並估算太子港大都會區垃圾回收其潛在能源的數量。
本研究採用多屬性決策評估技術 (SMART),指定的評估基準是能源潛力、環境效益、經濟效益和社會效益,並邀請七位環境工程與能源方面的專家參與評估三個廢棄物能源回收技術:焚化法、厭氧消化法及掩埋氣體回收法。專家決策評估結果以厭氧消化法被賦予最高的偏好,但只比掩埋氣體回收法稍高一點。本研究基於經濟效益和固體廢物最終處置的考慮,最終決定選擇掩埋氣體回收法應用於太子港大都市區都市廢棄物之能源回收技術。
經過計算,自掩埋場回收氣體的能源於16年內可產生約2.23億立方公尺的甲烷,足以產生約5.85億千瓦的電力,這種能源出售給電網,使海地太子港市區居民的用電率提高約5%。
摘要(英) The Port-au-Prince metropolitan area of Haiti has serious environmental sanitation issues due to the lack of proper municipal solid waste management system and the absence of any waste recovery or treatment and disposal facilities. In addition, the nation is also facing an energy crisis in the supply of energy resources. Today 75 percent of Haiti’s energy consumption is met by fuel wood and charcoal of which 80% are used in households especially for cooking, and the electrification rate is merely 38% of the people who have access to electricity. These situations will contribute to accelerate the degradation of the environment in Haiti.
Official studies revealed that 653 tons of municipal solid waste (MSW) are delivered daily into the open dumping site in Port-au-Prince, and it is believed that there still have hundreds of tons of refuse that are gone nowhere. This study found that the composition of MSW stream in Haiti has high biodegradable organic content by 73.8% by weight, and 73% by weight of moisture content. This research aims to estimate the amount of potential energy of MSW in the Port-au-Prince metropolitan area that can be recovered by using the most feasible and economical Waste-to-Energy (WtE) technology.
A Simple Multi-Attribute Rating Technique (SMART), which is used to figure out multiple attribute in the identified problems associated with a number of alternatives and discrete preference rating, was processed to assess three (3) WtE technologies: incineration, anaerobic digestion, and landfill gas to energy. The specified evaluation criteria are energy potential, environmental, economic, and social benefits. By using the SMART for supporting decision making, seven experts in the fields of environmental engineering and energy participated in refining the criteria and selecting the WtE technologies in their evaluation. The anaerobic digestion was given the highest preference, but only was a little bit higher than the technology “landfill gas to energy”. However, based on the consideration of economy and solid waste disposal, the final decision in this study selected the landfill gas to energy instead of anaerobic digestion for Port-au-Prince metropolitan area.
Through the estimation from the recovery of a landfill gas to energy system, approximately 223 million cubic meters of methane can be generated over 16 years in the landfill, which can generate about 585-millions kilowatt-hours of electricity. This energy can be sold to the power grid to increase to about 5% the access rate of electric power for residents of the Port-au-Prince metropolitan area in Haiti.
關鍵字(中) ★ 都市固體廢棄物
★ 簡易多屬性決策評估技術
★ 廢棄物能源回收技術
★ 厭氧消化法
★ 掩埋回收氣體法
關鍵字(英) ★ Municipal solid waste
★ Simple Multi-Attribute Rating Technique (SMART)
★ WtE technology
★ Anaerobic digestion
★ landfill gas to energy
論文目次 Abstract i
List of tables vii
List of figures viii
Abbreviations: ix
1. Introduction 1
1.1. Background 1
1.2. Objective of the study 2
1.3. Scope of the study 3
1.4. Statement of the problems 3
1.4.1. Energy policy in Haiti 3
1.4.2. The issue of energy use in Haiti 5
2. Methodology 8
3. Literature review 13
3.1. Solid waste composition 13
3.2. MSWM: Challenges in developing countries 15
3.2.1. Rapid urbanization and population growth 15
3.2.2. Legislation and policies 16
3.3. Integrated solid waste management (ISWM) 17
3.4. Hierarchy of ISWM 18
3.5. The concept of CE in waste management 20
3.6. WtE Technologies 20
3.6.1. Incineration 21
3.6.2. Gasification and pyrolysis 27
3.6.3. Plasma-based technology 28
3.6.4. Aerobic digestion 30
3.6.5. Anaerobic digestion 31
3.6.6. Landfill gas to energy 39
4. Results and discussion 46
4.1. Waste composition 46
4.2. Waste generation 48
4.3. Feasibility assessment of energy recovery technology 50
4.3.1. Overall judgments and value assessments 50
4.3.2. Tradeoff and decision 51
4.4. Estimation of the energy potential 53
4.5. Discussion 61
5. Conclusion 68
6. References 73
Appendix A: Waste Sort Analysis (Source: UNOPS & NREL) 77
Appendix B: Truck Monitoring Study (Source: UNOPS) 80
Appendix C: Questionnaire Form of SMART process for surveying the energy potential vs. municipal solid waste 83
Appendix D: Raw data from the respondents 87
參考文獻 Lozano Gracia, Nancy; Garcia Lozano, Marisa. 2017. Haitian cities: actions for today with an eye on tomorrow (French). Washington, D.C.: World Bank Group. Available online: http://documents.worldbank.org/curated/en/791721516635425309/Haitian-cities-actions-for-today-with-an-eye-on-tomorrow.
National Renewable Energy Laboratory sand HDR Engineering for USAID. “Haiti Feasibility of Waste-to-Energy Options at the Truitier Waste Site.” August 2014. https://www.nrel.gov/docs/fy14osti/60585.pdf
CHF International. Haiti Emergency Solid Waste Collection, Landfill Rehabilitation and Jobs Creation Program (SWM). (Cooperative Agreement # 521-A-00-04-00028-00). Final Report (July 28 2004 – April 30, 2005. Silver Spring, MD: CHF International, August 15, 2005.
Samuel Booth, Kip Funk, Scott Haase, Haiti Waste-to-Energy Opportunity Analysis, November 2010.
Latin American Energy Organization, European Commission, Energy-Economic Information System, Energy Statistics, Version No. 14, Quito, July 2002.
Republic of Haiti, United Nations, World Bank, European Commission, Inter-American Development Bank, Interim Cooperation Framework 2004-2006, Summary Report, July 2004.
Pete Young and Bétonus Pierre, Haiti Energy Situation, April 1996.
Energy Strategic Management Assessment Program (ESMAP), Stratégie pour l’énergie domestique en Haiti, 1991.
Valorisation Énergétique des Déchets Opportunités et Défis (In French). Available online: http://www.europarl.europa.eu/RegData/etudes/BRIE/2015/554208/EPRS_BRI(2015)554208_FR.pdf
Lombardi, L.; Carnevale, E.; Corti, A. A review of technologies and performances of thermal treatment systems for energy recovery from waste. Waste Manag. 2015, 37, 26–44.
Waste-to-Energy Plants in Europe in 2015. Available online: http://www.cewep.eu/2017/09/07/waste-to-energy-plants-in-europe-in-2015/
Deublein D, Steinhausser A, 2011. Biogas from Waste and Renewable Resources. 2nd Ed. WILEY-VCH Verlag GmbH & CO. KGaA
BREF, 2006. Reference Document on the Best Available Techniques for Waste Incineration
Kolb, T., Seifert, H., 2002. Thermal Waste Treatment: State of the art e a Summary. Waste Management 2002: The future of waste management in Europe. VDIGVC, Strasbourg, France (Düsseldorf, Germany)
A. Bosmans, I. Vanderreydt, D. Geysen, L. Helsen: The crucial role of Waste-to-Energy technologies in enhanced landfill mining: a technology review, 2013.
EMIS, 2010. Energie & milieu-informatiesysteem voor het Vlaams Gewest. http://www.emis.vito.be/
Bridgwater, A.V., 1994. Catalysis in thermal biomass conversion. Applied Catalysis A: General, 5 – 47
Helsen, L., 2000. Low-temperature Pyrolysis of CCA Treated Wood Waste. PhD thesis, Heverlee, KU Leuven
Zaman, A.U. Life cycle assessment of pyrolysis–gasification as an emerging municipal solid waste treatment technology. Int. J. Environ. Sci. Technol. 2013, 10, 1029–1038.
UBA, 2001. Draft of a German report with basic information’s for a BREF-Document. Waste Incineration.
Heberlein, J., Murphy, A.B., 2008. Thermal plasma waste treatment. Journal of Physics D: Applied Physics 41 (5), 053001.
Berger J, Fornés LV, Ott C, et al., 2005. Methane oxidation in a landfill cover with capillary barrier. Waste Manage 25: 369–373
Thompson AG, Wagner-Riddle C, Fleming R, 2004. Emissions of N2O and CH4 during the composting of liquid swine manure. Environ monit assess 91 (1–3): 87–104.
Guljajew N, Szapiro M, 1962. Determining of heat energy volume released by waste during biothermal disposal. Sbornik Naucznych Robot: 135–141
Irvine G, Lamont ER, Antizar-Ladislao B, 2010. Energy from waste: reuse of compost heat as a source of renewable energy. International Journal of Chemical Engineering 2010: 1–10.
Finnveden G, Moberg Å, Johansson J, et al., 2005. Life cycle assessment of energy from solid waste— part 2: landfilling compared to other treatment methods. J Clean Prod 13: 231–240.
Mata-Alvarez J, Mace S, Llabres P, 2000. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresource technol 74: 3–16
Finnveden G, Johansson J, Lind P, et al., 2005. Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13: 213–229.
Zhang R, El-Mashad HM, Karl Hartman, et al., 2007. Characterization of food waste as feedstock for anaerobic digestion. Bioresource Technol 98: 929–935.
U.S. Environmental Protection Agency, 2011. An overview of Landfill Gas Energy in the United States, Landfill Methane Outreach Program (LMOP).
Lamb D, Venkatraman K, Bolan N, et al., 2012. An Alternative Technology for the Sustainable Management of Landfill Sites. Environ Sci Technol 44: 561–637.
U.S. Energy Information Administration, 2010. State Profile and Energy Estimates, New Jersey, available from: www.eia.gov/state/data.cfm?sid=NJ.
Tukker A. Product services for a resource-efficient and circular economy—A review. Journal of Cleaner Production. 2015; 97:76-91. DOI: 10.1016/j.jclepro.2013.11.049
Trindade A, Palacio J, González A, Rúa Orozco D, Lora E, Renó M, et al. Advanced exergy analysis and environmental assessment of the steam cycle of an incineration system of municipal solid waste with energy recovery. Energy Conversion and Management. 2018; 157:195-214. DOI: 10.1016/j.enconman.2017.11.083
Igoni A, Sepiribo I, Harry K. Modelling continuous anaerobic digestion of municipal solid waste in biogas production. Energy and Environmental Engineering. 2016; 4:30-43. DOI: 10.13189/eee.2016.040302
WEC—World Energy Council. World Energy Resources: Waste to Energy. London: World Energy Council; 2013. pp. 1-14. DOI: 10.1080/09297040802385400. Available from:https://www.worldenergy.org/wp-content/uploads/2013/10/WER_2013_7b_Waste_to_Energy.pdf
Phyllis, 2011. The Composition of Biomass and Waste. Energy research Centre of the Netherlands (ECN). http://www.ecn.nl/phyllis
Quaghebeur, M., Laenen, B., Geysen, D., Nielsen, P., Pontikes, Y., Van Gerven, T., Spooren, J., 2013. Characterization of landfilled materials: screening of the enhanced landfill mining potential. Journal of Cleaner Production 55, 72-83.
PricewaterhouseCoopers, 1998. The Facts: A European Cost–Benefit Perspective. Management Systems for Packaging Waste, November.
Tchobanoglous George, Thiesen Hilary, Vigil Samuel, Integrated Solid Waste Management, New York: McGraw-Hill Inc., 1993
Y. Vögeli, C. R. Lohri, A. Gallardo, S. Diener and C. Zurbrügg, “Anaerobic Digestion of Biowaste in Developing Countries,” EAWAG, Dübendorf, 2014.
EPA, “LFG Energy Projects, frequently asked questions. www3.epa.gov/lmop/faq/lfg.html visited August 2016”.
指導教授 廖萬里(Wan-Li, Liao) 審核日期 2019-6-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明