博碩士論文 106225021 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:108 、訪客IP:18.119.124.52
姓名 許竣瑝(Jiun-Huang Hsu)  查詢紙本館藏   畢業系所 統計研究所
論文名稱
(Performance of a two-sample test with Mann-Whitney statistics under dependent censoring with copula models)
相關論文
★ A control chart based on copula-based Markov time series models★ An improved nonparametric estimator of distribution function for bivariate competing risks model
★ Estimation and model selection for left-truncated and right-censored data: Application to power transformer lifetime modeling★ A robust change point estimator for binomial CUSUM control charts
★ Maximum likelihood estimation for double-truncation data under a special exponential family★ A class of generalized ridge estimator for high-dimensional linear regression
★ A copula-based parametric maximum likelihood estimation for dependently left-truncated data★ A class of Liu-type estimators based on ridge regression under multicollinearity with an application to mixture experiments
★ Dependence measures and competing risks models under the generalized Farlie-Gumbel-Morgenstern copula★ A review and comparison of continuity correction rules: the normal approximation to the binomial distribution
★ Likelihood inference on bivariate competing risks models under the Pareto distribution★ Parametric likelihood inference with censored survival data under the COM-Poisson cure models
★ Likelihood-based analysis of doubly-truncated data under the location-scale and AFT models★ Copula-based Markov chain model with binomial data
★ The Weibull joint frailty-copula model for meta-analysis with semi-competing risks data★ A general class of multivariate survival models derived from frailty and copula models: application to reliability theory
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 曼-惠特尼檢定是一種用來比較兩組平均數是否一樣的無母數方法。對於右設限(Right censored)存活資料,曼-惠特尼影響(Mann-Whitney effect)是一種有效比較兩組存活時間是否相同的無母數方法。然而,在Efron (1967)、Koziol 及 Jia (2009)和Dobler 及 Pauly (2018)中提到曼-惠特尼影響的估計量會有不一致性,在存活時間跟設限時間不獨立的情況。在這篇論文中,我們推導出在存活時間跟設限時間相依下,曼-惠特尼影響的估計理論值。在給定存活時間跟設限時間相依為一個關聯結構(Copula)模型時,我們也推導出了曼-惠特尼影響估計量的漸進誤差。在假設的關聯結構(Copula)模型下,我們運用關聯結構構圖像法(Copula-graphic)去提供了一個新的曼-惠特尼影響估計量。我們運用了鞅論(Martingale)去證明這個新的估計量具有一致性以及大樣本常態漸進的性質。此外,當遇到假設的關聯結構(Copula)模型不符合實際的資料時,我們額外提供一個新的方法可以有效的鑑定兩個群體的存活時間是否一樣。最後,我們用模擬的方式去驗證我們的方法,然後套用到真實資料上並且說明結論。
摘要(英) The Mann-Whitney test is a nonparametric test for comparing two groups. For analysis of right-censored survival data, the Mann-Whitney effect is a measure for comparing the two survival times from the two groups. However, the two-sample test based on the estimator of the Mann-Whitney effect (Efron 1967; Koziol and Jia 2009; Dobler and Pauly 2018) can be inconsistent when the independent censoring assumption fails to hold. In this thesis, we derive the theoretical properties of the estimator of the Mann-Whitney effect under dependent censoring. We derive the asymptotic bias of the Mann-Whitney effect estimator when dependence between survival time and censoring time is modeled by a copula. We also propose a new estimator of the Mann-Whitney effect by applying the copula-graphic estimator under assumed copula models. We prove the consistency and asymptotic normality of the proposed estimator by a martingale theory. We propose a new test that is asymptotically valid under a possibly misspecified copula model. Simulations are conducted to verify the proposed method, and a real data example is given for illustration.
關鍵字(中) ★ 曼-惠特尼檢定
★ 關聯結構
★ 關聯結構構圖像估計量
★ 鞅論
★ 相依設限資料
★ 兩樣本問題
關鍵字(英) ★ Mann-Whitney test
★ Copula
★ Copula-graphic estimator
★ Martingale
★ Dependent censoring
★ Two-sample problem
論文目次 Contents
摘要 I
Abstract II
誌謝辭 III
Contents IV
Chapter 1: Introduction 1
Chapter 2: Background 3
2.1 Two-sample comparison 3
2.2 Mann-Whitney effect 5
Chapter 3: Dependent censoring 7
3.1 Bias under dependent censoring 7
3.2 Copula-graphic (CG) estimator 12
3.3 Consistent estimation of under dependent censoring 14
3.4 Bias of under a misspecified copulas 16
Chapter 4: Simulation 23
4.1 Simulation design 23
4.2 Simulation result 25
Chapter 5: Data analysis 29
Chapter 6: Concluding remarks 33
Appendix 35
Appendix A: Asymptotic bias 35
Appendix B: Data generation under copula models 40
Appendix C: Simulation for comparing the KM estimator and CG estimator 42
Appendix D: The Mann-Whitney effect 50
Appendix E: The code for Data Analysis 51
REFERENCES 60
參考文獻 Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 701-726.
Bakoyannis, G., & Touloumi, G. (2015). Impact of dependent left truncation in semiparametric competing risks methods: a simulation study. Communications in Statistics-Simulation and Computation, 46(3), 2025-2042.
Braekers, R., & Veraverbeke, N. (2005). A copula‐graphic estimator for the conditional survival function under dependent censoring. Canadian Journal of Statistics, 33(3), 429-447.
Chakraborti, S. (1990). A one-sided test of homogeneity against simple tree alternative for right-censored data. Communications in Statistics-Simulation and Computation, 19(3), 879-889.
Chakraborti, S., & Desu, M. (1991). Linear rank tests for comparing treatments with a control when data are subject to unequal patterns of censorship. Statistica Neerlandica, 45(3), 227-254.
Chen, Y.-I. (1994). A generalized steel procedure for comparing several treatments with a control under random right-censorship. Communications in Statistics-Simulation and Computation, 23(1), 1-16.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
de Uña-Álvarez, J., & Veraverbeke, N. (2013). Generalized copula-graphic estimator. Test, 22(2), 343-360.
de Uña-Álvarez, J., & Veraverbeke, N. (2017). Copula-graphic estimation with left-truncated and right-censored data. Statistics, 51(2), 387-403.
Dobler, D., & Pauly, M. (2018). Bootstrap-and permutation-based inference for the Mann–Whitney effect for right-censored and tied data. Test, 27(3), 639-658.
Efron, B. (1967). The two sample problem with censored data. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
Emura, T., & Chen, Y.-H. (2016). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical methods in medical research, 25(6), 2840-2857.
Emura, T., & Chen, Y.-H. (2018). Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches: Springer.
Emura, T., Matsui, S., & Chen, H.-Y. (2019). compound. Cox: univariate feature selection and compound covariate for predicting survival. Computer methods and programs in biomedicine, 168, 21-37.
Emura, T., & Michimae, H. (2017). A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environmental and ecological statistics, 24(1), 151-173.
Emura, T., & Murotani, K. (2015). An algorithm for estimating survival under a copula-based dependent truncation model. Test, 24(4), 734-751.
Emura, T., & Wang, W. (2012). Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. Journal of Multivariate Analysis, 110, 171-188.
Farlie, D. J. (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47(3/4), 307-323.
Fleming, T. R., & Harrington, D. P. (2011). Counting processes and survival analysis (Vol. 169): John Wiley & Sons.
Gumbel, E. J. (1958). Statistics of extremes: Courier Corporation.
Gumbel, E. J. (1960). Distributions des valeurs extremes en plusiers dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171-173.
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481.
Koziol, J. A., & Jia, Z. (2009). The concordance index C and the Mann–Whitney parameter Pr (X> Y) with randomly censored data. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 51(3), 467-474.
Lagakos, S., & Mosteller, F. (1981). A case study of statistics in the regulatory process: the FD&C Red No. 40 experiment. Journal of the National Cancer Institute, 66(1), 197-212.
Lo, S. M., & Wilke, R. A. (2010). A copula model for dependent competing risks. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(2), 359-376.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of mathematical statistics, 50-60.
Moradian, H., Larocque, D., & Bellavance, F. (2019). Survival forests for data with dependent censoring. Statistical methods in medical research, 28(2), 445-461.
Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
Nelsen, R. B. (2006). An introduction to copulas: Springer Science & Business Media.
Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1), 27-52.
Rivest, L.-P., & Wells, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79(1), 138-155.
Staplin, N., Kimber, A., Collett, D., & Roderick, P. (2015). Dependent censoring in piecewise exponential survival models. Statistical methods in medical research, 24(3), 325-341.
Sujica, A., & Van Keilegom, I. (2018). The copula-graphic estimator in censored nonparametric location-scale regression models. Econometrics and statistics, 7, 89-114.
Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3): Cambridge university press.
Zheng, M., & Klein, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82(1), 127-138.
指導教授 江村剛志(Takeshi Emura) 審核日期 2019-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明