參考文獻 |
Aalen, O. (1978). Nonparametric inference for a family of counting processes. The Annals of Statistics, 701-726.
Bakoyannis, G., & Touloumi, G. (2015). Impact of dependent left truncation in semiparametric competing risks methods: a simulation study. Communications in Statistics-Simulation and Computation, 46(3), 2025-2042.
Braekers, R., & Veraverbeke, N. (2005). A copula‐graphic estimator for the conditional survival function under dependent censoring. Canadian Journal of Statistics, 33(3), 429-447.
Chakraborti, S. (1990). A one-sided test of homogeneity against simple tree alternative for right-censored data. Communications in Statistics-Simulation and Computation, 19(3), 879-889.
Chakraborti, S., & Desu, M. (1991). Linear rank tests for comparing treatments with a control when data are subject to unequal patterns of censorship. Statistica Neerlandica, 45(3), 227-254.
Chen, Y.-I. (1994). A generalized steel procedure for comparing several treatments with a control under random right-censorship. Communications in Statistics-Simulation and Computation, 23(1), 1-16.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141-151.
de Uña-Álvarez, J., & Veraverbeke, N. (2013). Generalized copula-graphic estimator. Test, 22(2), 343-360.
de Uña-Álvarez, J., & Veraverbeke, N. (2017). Copula-graphic estimation with left-truncated and right-censored data. Statistics, 51(2), 387-403.
Dobler, D., & Pauly, M. (2018). Bootstrap-and permutation-based inference for the Mann–Whitney effect for right-censored and tied data. Test, 27(3), 639-658.
Efron, B. (1967). The two sample problem with censored data. Paper presented at the Proceedings of the fifth Berkeley symposium on mathematical statistics and probability.
Emura, T., & Chen, Y.-H. (2016). Gene selection for survival data under dependent censoring: a copula-based approach. Statistical methods in medical research, 25(6), 2840-2857.
Emura, T., & Chen, Y.-H. (2018). Analysis of Survival Data with Dependent Censoring: Copula-Based Approaches: Springer.
Emura, T., Matsui, S., & Chen, H.-Y. (2019). compound. Cox: univariate feature selection and compound covariate for predicting survival. Computer methods and programs in biomedicine, 168, 21-37.
Emura, T., & Michimae, H. (2017). A copula-based inference to piecewise exponential models under dependent censoring, with application to time to metamorphosis of salamander larvae. Environmental and ecological statistics, 24(1), 151-173.
Emura, T., & Murotani, K. (2015). An algorithm for estimating survival under a copula-based dependent truncation model. Test, 24(4), 734-751.
Emura, T., & Wang, W. (2012). Nonparametric maximum likelihood estimation for dependent truncation data based on copulas. Journal of Multivariate Analysis, 110, 171-188.
Farlie, D. J. (1960). The performance of some correlation coefficients for a general bivariate distribution. Biometrika, 47(3/4), 307-323.
Fleming, T. R., & Harrington, D. P. (2011). Counting processes and survival analysis (Vol. 169): John Wiley & Sons.
Gumbel, E. J. (1958). Statistics of extremes: Courier Corporation.
Gumbel, E. J. (1960). Distributions des valeurs extremes en plusiers dimensions. Publ. Inst. Statist. Univ. Paris, 9, 171-173.
Kaplan, E. L., & Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of the American Statistical Association, 53(282), 457-481.
Koziol, J. A., & Jia, Z. (2009). The concordance index C and the Mann–Whitney parameter Pr (X> Y) with randomly censored data. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 51(3), 467-474.
Lagakos, S., & Mosteller, F. (1981). A case study of statistics in the regulatory process: the FD&C Red No. 40 experiment. Journal of the National Cancer Institute, 66(1), 197-212.
Lo, S. M., & Wilke, R. A. (2010). A copula model for dependent competing risks. Journal of the Royal Statistical Society: Series C (Applied Statistics), 59(2), 359-376.
Mann, H. B., & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of mathematical statistics, 50-60.
Moradian, H., Larocque, D., & Bellavance, F. (2019). Survival forests for data with dependent censoring. Statistical methods in medical research, 28(2), 445-461.
Morgenstern, D. (1956). Einfache beispiele zweidimensionaler verteilungen. Mitteilingsblatt fur Mathematische Statistik, 8, 234-235.
Nelsen, R. B. (2006). An introduction to copulas: Springer Science & Business Media.
Nelson, W. (1969). Hazard plotting for incomplete failure data. Journal of Quality Technology, 1(1), 27-52.
Rivest, L.-P., & Wells, M. T. (2001). A martingale approach to the copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79(1), 138-155.
Staplin, N., Kimber, A., Collett, D., & Roderick, P. (2015). Dependent censoring in piecewise exponential survival models. Statistical methods in medical research, 24(3), 325-341.
Sujica, A., & Van Keilegom, I. (2018). The copula-graphic estimator in censored nonparametric location-scale regression models. Econometrics and statistics, 7, 89-114.
Van der Vaart, A. W. (2000). Asymptotic statistics (Vol. 3): Cambridge university press.
Zheng, M., & Klein, J. P. (1995). Estimates of marginal survival for dependent competing risks based on an assumed copula. Biometrika, 82(1), 127-138.
|