參考文獻 |
Aki. K. (1965). Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull. Earthquake Res. Inst. 43: 237–239. Aki.K.(1981).Aprobabilisticsynthesisofprecursoryphenomena.In: SimpsonD.W,Richards PG (eds) Earthquake prediction. An International Review, 4, 556–574. Bamber, D. C. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology, 12(4), 387–415. Chan, C.H., Wu, Y.M., Tseng, T.L., Lin, T.L.andChen, C.C.(2012).Spatialandtemporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, 532–535, 215–222. Chen,Y.I.,Huang,C.S.andLiu,J.Y.(2015).Statisticalanalysisofearthquakesafterthe1999 Mw 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model. Journal of Asian Earth Sciences, 114, 299–304. Chen F, Xue Y, Tan M T,and Chen P. (2015). Efficient statistical tests to compare Youden index: accounting for contingency correlation. Stat Med. 34, 1560-–1576 DeVries, P. M. R., Viégas, F., Wattenberg, M. and Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 632–634. Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768–769. Gerstenberger, M., Wiemer, S. , Jones, L. M. and Reasenber, P. A. (2005). Real-time forecasts of tomorrow’s earthquakes in California. Nature, 435(7074), 328–331. Gerstenberger, M., Jones, L. M. and Wiemer, S. (2007). Short-term aftershock probabilities: case studies in California. Seismological Research Letters,78(1), 66-77. Gutenberg, R. and Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188. HanP.,HattoriK.,ZhuangJ.,ChenC.H.,Liu,J.Y.,andYoshida,S.(2016).EvaluationofULF seismo‐magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram, Geophys. J. Int. 208, 482–490. Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering Algorithm. Journal of the Royal Statistical Society, Series C. 28 (1), 100–108.
31
Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. Kisslinger, C. and Jones, L. M. (1991). Properties of aftershocks in southern California. J. Geophys. Res. 96, 11947–11958. Lloyd, S. P. (1957). Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28 (2), 129–137 MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 281–297. Mason, S. J. and Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical signififcance and interpretation. Quart. J. Roy. Meteor. Soc. 128, 2145–2166. McHugh, M. L. (2009). The odds ratio: calculation, usage, and interpretation. Biochemia medica, 19(2), 120–126. Molchan, G. M. (1991). Structure of optimal strategies in earthquake prediction, Tectonophysics, 193, 267–276. Molchan, G. M. and Kagan, Y. Y. (1992). Earthquake prediction and its optimization, J. Geophys. Res., 97; 4823–4838. Molchan,G.andKeilis-Borok,V.(2008).Earthquakeprediction: probabilisticaspect.Geophys. J. Int., 173 (3), 1012–1017. Morris, J. A. and Gardner, M. J. (1989). Calculating confidence for relative risks, odds, and standardised ratios and rates. British Medical Journal, 296(6632), 1313 – 1316. Ogata, Y. (1983). Estimation of the parameters in the modified 359 Omori formula for aftershock sequences by the maximum likelihood procedure. J. Phys, Earth, 31, 115–124. Omori,F.(1894).Ontheaftershocksofearthquake.J.ColI.Sci.Imp.Univ.Tokyo,7,111–200. Reasenberg, P.A.andJones, L.M.(1989).EarthquakehazardafteramainshockinCalifornia. Science, 243, 1173–1176. Reasenberg, P. A. and Jones, L. M. (1994). Earthquake aftershocks:update. Science, 265, 1251–1252. Sarlis, N. V., and Christopoulos, S. R. G. (2014). Visualization of the significance of receiver operatingcharacteristicsbasedonconfidenceellipses.ComputerPhysicsCommunications,185, 1172–1176. Shi, Y. and Bolt, B. A.(1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72 (5), 1677–1687. Smith, W. D. (1981). The b-value as an earthquake precursor. Nature, 289(5794), 136–139.
Swets, J.(1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30(4), 521–605. Utsu, T., Ogata, Y. and Matsuura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1– 33. Wang, T., Zhuang, J., Kato, T. and Bebbington, M. (2013). Assessing the potential improvement in short–term earthquake forecasts from incorporation of GPS data, Geophys. Res. Lett., 40; 2631–2635. Wiemer,S.andKatsumata,K.(1999).Spatialvariabilityofseismicityparametersinaftershock zones. Journal of Geophysical Research, 104(b6), 13135–13151 Wiemer, S. and Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities; an improved technique to calculate recurrence times? Journal of Geophysical Research, 102(b7), 15115–15128. Wiemer, S.andWyss, M.(2000).Minimummagnitudeofcompletenessinearthquakecatalogs: Examples from Alaska, the western US and Japan. Bulletin of the Seismological Society of America, 90, 859–869. Wiemer, S. (2000). Introducing probabilistic aftershock hazard mapping. Geophys. Res. Lett, 27, 3405–3408. Wu, Y. M., Chen, S. K., Huang, T. C., Huang, H. H., Chao, W. A., and Koulakov, I. (2018). Relationship between earthquake b-values and crustal stresses in a young orogenic belt. Geophysical Research Letters, 45, 1832–1837. Zechar, J. D. and Jordan, T. H. (2008). Testing alarm-based earthquake predictions, Geophys. J. Int., 172, 715–724. Youden, W. J. (1950). Index for rating diagnostic tests. Cancer. 3, 32–35. |