博碩士論文 106225014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:52.14.27.122
姓名 簡子軒(Zih-Syuan Jian)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 多板塊交界地區餘震時空風險之統計評估
(Statistical Evaluation of Spatial-Temporal-Magnitude of Short--Term Aftershock Hazard on a junction of multiple tectonic plates)
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 位於多板塊交界帶的台灣與日本,斷層多而複雜,因此在強主震後經常發生集群式的有感餘震。為能在強震後進行即時的短期餘震風險評估,本文利用混合二維常態分布描述餘震的空間分布,結合Reasenberg-Jones(簡記為 RJ)模型,建立餘震時空風險模式,簡記為SRJ模式。本文分別分析 1999年 9月 21日台灣集集規模 7.3 地震,以及2011 年 3 月 11 日發生在日本東部海域規模9.0地震後的餘震資料,藉SRJ模式或傳統的點格--RJ方法建立相對餘震風險圖用以預警強餘震,並且根據各種準則,評估上述相對餘震風險圖在即期預警短期強餘震的效果。在綜合評估之下,SRJ模式對於上述兩筆餘震序列的風險評估優於點格--RJ方法。
摘要(英) Taiwan and Japan are located in the junction of multiple tectonic plates where involve complex fault zones. Therefore, there are clustered aftershocks of large earthquakes. In order to assess the risk of aftershock in near-real-time after the main shock, we propose a model with a mixture of bivariate normal distribution to describe the spatial hazard of aftershocks. The spatial hazard function joint with the Reasenberg-Jone (RJ) model then gives a new spatial-temporal-magnitude hazard of aftershocks, denoted by SRJ model. We employ the SRJ model to illustrate two aftershock sequences of, namely, the Mw 7.7 earthquake occurred on September 21, 1999, in Chi-Chi, Taiwan, and Mw 9.0 earthquake occurred on March 11, 2011, in Tohoku-Oki, Japan. The relative aftershock hazard (RAH) maps are constructed based on SRJ model or gridding-RJ method. The effect of RAH maps on depicting possible rupture area of forthcoming large aftershocks is evaluated according to a variety of criteria based on ROC curve and Molchan error diagram. The results finally demostrate that the RAH map based on the SRJ model provides an efficent and better forecast of spatial-temporal magnitude aftershock hazard than the one hazard on gridding--RJ model.
關鍵字(中) ★ 餘震發生率衰退法則
★ 地震規模頻率法則
★ 餘震時間規模風險模式
★ 混合分布
★ 機率增益量
★ 勝算增益量
★ 接收者操作特徵曲線
★ 相對餘震風險圖
關鍵字(英) ★ magnitude frequency law
★ time-magnitude model
★ mixture model
★ relative aftershock hazard map
★ Probability Gain
★ Odds gain
★ Receiver Operating Characteristic
★ relative aftershock hazard map
論文目次 摘要 iv
Abstract v
誌謝辭 vi
目錄 vii
圖目錄 ix
表目錄 x
一、 研究動機與目的 1
二、 文獻回顧 3
2.1 地震之規模–頻率模型 3
2.2 餘震之發生率 5
2.3 餘震之時間–規模風險模型 7
三、 研究方法 9
3.1 餘震空間分布 9
3.1.1 K–平均分群演算法 9
3.1.2 EM 演算法 10
3.2 餘震時空規模風險模式 13
3.3 餘震風險預警效果之評估 14
四、 實例分析 18
4.1 台灣集集餘震風險評估 18
4.2 日本東北地震風險評估 23
五、 討論與總結 30
參考文獻 31
參考文獻 Aki. K. (1965). Maximum likelihood estimate of b in the formula logN = a − bM and its confidence limits. Bull. Earthquake Res. Inst. 43: 237–239. Aki.K.(1981).Aprobabilisticsynthesisofprecursoryphenomena.In: SimpsonD.W,Richards PG (eds) Earthquake prediction. An International Review, 4, 556–574. Bamber, D. C. (1975). The area above the ordinal dominance graph and the area below the receiver operating characteristic graph. Journal of Mathematical Psychology, 12(4), 387–415. Chan, C.H., Wu, Y.M., Tseng, T.L., Lin, T.L.andChen, C.C.(2012).Spatialandtemporal evolution of b-values before large earthquakes in Taiwan. Tectonophysics, 532–535, 215–222. Chen,Y.I.,Huang,C.S.andLiu,J.Y.(2015).Statisticalanalysisofearthquakesafterthe1999 Mw 7.7 Chi-Chi, Taiwan, earthquake based on a modified Reasenberg-Jones model. Journal of Asian Earth Sciences, 114, 299–304. Chen F, Xue Y, Tan M T,and Chen P. (2015). Efficient statistical tests to compare Youden index: accounting for contingency correlation. Stat Med. 34, 1560-–1576 DeVries, P. M. R., Viégas, F., Wattenberg, M. and Meade, B. J. (2018). Deep learning of aftershock patterns following large earthquakes. Nature, 560(7720), 632–634. Forgy, E. W. (1965). Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics, 21, 768–769. Gerstenberger, M., Wiemer, S. , Jones, L. M. and Reasenber, P. A. (2005). Real-time forecasts of tomorrow’s earthquakes in California. Nature, 435(7074), 328–331. Gerstenberger, M., Jones, L. M. and Wiemer, S. (2007). Short-term aftershock probabilities: case studies in California. Seismological Research Letters,78(1), 66-77. Gutenberg, R. and Richter, C. F. (1944). Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188. HanP.,HattoriK.,ZhuangJ.,ChenC.H.,Liu,J.Y.,andYoshida,S.(2016).EvaluationofULF seismo‐magnetic phenomena in Kakioka, Japan by using Molchan’s error diagram, Geophys. J. Int. 208, 482–490. Hartigan, J. A. and Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering Algorithm. Journal of the Royal Statistical Society, Series C. 28 (1), 100–108.
31
Kass, R. E., and Raftery, A. E. (1995). Bayes factors. Journal of the American Statistical Association, 90(430), 773–795. Kisslinger, C. and Jones, L. M. (1991). Properties of aftershocks in southern California. J. Geophys. Res. 96, 11947–11958. Lloyd, S. P. (1957). Least Squares Quantization in PCM. IEEE Transactions on Information Theory, 28 (2), 129–137 MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press, 281–297. Mason, S. J. and Graham, N. E. (2002). Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: Statistical signififcance and interpretation. Quart. J. Roy. Meteor. Soc. 128, 2145–2166. McHugh, M. L. (2009). The odds ratio: calculation, usage, and interpretation. Biochemia medica, 19(2), 120–126. Molchan, G. M. (1991). Structure of optimal strategies in earthquake prediction, Tectonophysics, 193, 267–276. Molchan, G. M. and Kagan, Y. Y. (1992). Earthquake prediction and its optimization, J. Geophys. Res., 97; 4823–4838. Molchan,G.andKeilis-Borok,V.(2008).Earthquakeprediction: probabilisticaspect.Geophys. J. Int., 173 (3), 1012–1017. Morris, J. A. and Gardner, M. J. (1989). Calculating confidence for relative risks, odds, and standardised ratios and rates. British Medical Journal, 296(6632), 1313 – 1316. Ogata, Y. (1983). Estimation of the parameters in the modified 359 Omori formula for aftershock sequences by the maximum likelihood procedure. J. Phys, Earth, 31, 115–124. Omori,F.(1894).Ontheaftershocksofearthquake.J.ColI.Sci.Imp.Univ.Tokyo,7,111–200. Reasenberg, P.A.andJones, L.M.(1989).EarthquakehazardafteramainshockinCalifornia. Science, 243, 1173–1176. Reasenberg, P. A. and Jones, L. M. (1994). Earthquake aftershocks:update. Science, 265, 1251–1252. Sarlis, N. V., and Christopoulos, S. R. G. (2014). Visualization of the significance of receiver operatingcharacteristicsbasedonconfidenceellipses.ComputerPhysicsCommunications,185, 1172–1176. Shi, Y. and Bolt, B. A.(1982). The standard error of the magnitude-frequency b value. Bulletin of the Seismological Society of America, 72 (5), 1677–1687. Smith, W. D. (1981). The b-value as an earthquake precursor. Nature, 289(5794), 136–139.
Swets, J.(1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293. Utsu, T. (1961). A statistical study on the occurrence of aftershocks. Geophysical Magazine, 30(4), 521–605. Utsu, T., Ogata, Y. and Matsuura, R. S. (1995). The centenary of the Omori formula for a decay law of aftershock activity. Journal of Physics of the Earth, 43(1), 1– 33. Wang, T., Zhuang, J., Kato, T. and Bebbington, M. (2013). Assessing the potential improvement in short–term earthquake forecasts from incorporation of GPS data, Geophys. Res. Lett., 40; 2631–2635. Wiemer,S.andKatsumata,K.(1999).Spatialvariabilityofseismicityparametersinaftershock zones. Journal of Geophysical Research, 104(b6), 13135–13151 Wiemer, S. and Wyss, M. (1997). Mapping the frequency-magnitude distribution in asperities; an improved technique to calculate recurrence times? Journal of Geophysical Research, 102(b7), 15115–15128. Wiemer, S.andWyss, M.(2000).Minimummagnitudeofcompletenessinearthquakecatalogs: Examples from Alaska, the western US and Japan. Bulletin of the Seismological Society of America, 90, 859–869. Wiemer, S. (2000). Introducing probabilistic aftershock hazard mapping. Geophys. Res. Lett, 27, 3405–3408. Wu, Y. M., Chen, S. K., Huang, T. C., Huang, H. H., Chao, W. A., and Koulakov, I. (2018). Relationship between earthquake b-values and crustal stresses in a young orogenic belt. Geophysical Research Letters, 45, 1832–1837. Zechar, J. D. and Jordan, T. H. (2008). Testing alarm-based earthquake predictions, Geophys. J. Int., 172, 715–724. Youden, W. J. (1950). Index for rating diagnostic tests. Cancer. 3, 32–35.
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2019-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明