參考文獻 |
Reference
[1] Carter, C. K., Kohn, R. (1994) Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika, 83, 589-601.
[2] Darsow, W. F., Nguten, B., Olsen, E. T. (1992) Copulas and Markov Processes. Illinois Journal of Mathematics,36,600−642.
[3] Domma, F., Giordano, S., Francesco, P. P. (2009). Statistical modeling of temporal dependence in financial data via a copula function. Communications in Statistics-Simulation and Computation 38:703–728.
[4] Emura, T. Long, T. H., Sun, L. H. (2017) R routines performing estimation and statistical process control under copula-based time series models. Communications in Statistics Simulation and Computation, 46(4), 3067-3087.
[5] Frees, E. W., Valadez, E. (1998) Understanding the relationships using copulas. North American Actuarial Journal, 2, 1-25.
[6] Gelman, A., Rubin, D. (1992) Inference from Iterative simulation using Multiple sequences. Statistical Science, 7, 457-473.
[7] Kim JM, Hwang SY (2017). Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals. Communications in Statistics Simulation and Computation, 46(10), 7639-7653.
[8] Kim JM, Baik J (2018a), Anomaly detection in sensor data, The Korean Reliability Society, Journal of Applied Reliability 18(1): 20-32.42
[9] Kim JM, Baik J (2018b), Change point detection by copula conditional distributions, manuscript.
[10] Joe,H.(1997) Multivariate Models and dependence. Chapman & hall.
[11] Long, T. H., Emura, T. (2014) A control chart using copula-based Markov chain models. Journal of the Chinese Statistical Association , 52(4), 466-496.
[12] Ly, A., Marsman, M., Verhagen, A., Grasman, R., & Wagenmakers, E.-J. (2015). A tutorial on Fisher information. Journal of Mathematical Psychology, (submitted for publication).
[13] M. Kok, J. Dahlin, T. B. Scho¨n, A. Wills, Newton-based maximum likelihood estimation in nonlinear state space models, Proc. 17th IFAC Symp. Syst. Identificat., pp. 969-974, Oct. 2015.
[14] Nelsen, R. B. (2006) An Introduction to Copulas, 2nd Edition. Springer Series in Statistics, Springer-V erlag : NewY ork.
[15] P. Zangari, An improved methodology for measuring VaR, Risk Metrics Monitor, 2nd quarter, Reuters/J.P. Morgan, 7–25 (1996).
[16] R development Core Team (2014) R: a language and environment for statistical computing. Foundation for Statistical Computing, R version 3.2.1.
[17] Ross, S. M. (2006) Simulation,4th Edition. Elevier.
[18] Otilia Boldea and Jan R. Magnus (2009) Maximum likelihood estimation of the multivariate normal mixture model.43
[19] Shih-Hao Huang, Mong-Na Lo Huang, Kainam Thomas Wong, Tzu-Chiang Tseng (2015) Copula – to model multi-channel fading by correlated but arbitrary Weibull marginals, giving a closed-form outage probability of selection combining reception.
[20] Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model, TEST 24(4):734-51
[21] Sun LH, Lee CS, Emura T (2018) A Bayesian inference for time series via copula based Markov chain models, Commun Stat-Siml, doi:10.1080/03610918.2018.1529241
[22] William Q. Meeker, Luis A. Escobar (1998) Statistical methods for reliability data.
[23] Gonzalez JR, Fernandez E, Moreno V, et al. (2005) Sex differences in hospital readmission among colorectal cancer patients. J Epidemiol Commun Health; 59:506–511.
[24] Rondeau V, Gonzalez JR, Mazroui Y, et al. (2015) R frailtypack: general frailty models: shared, joint and nested frailty models with prediction. CRAN, R package version 2.7.5: CRAN: The Comprehensive R Archive Network.
[25] Emura T, Long TH, Sun LH (2017), R routines for performing estimation and statistical process control under copula-based time series models, Communications in Statistics - Simulation and Computation, 46 (4): 3067-87
|